Лизосомы в бактериальной клетке

Содержание
  1. Просто о структуре бактерий
  2. Необязательные структурные элементы.                   
  3. Химический состав бактериальной клетки.
  4. Бактерии — Строение клетки бактерии и и химический состав, фото
  5. Структура бактериальной клетки
  6. Цитоплазматическая мембрана
  7. Клеточная стенка
  8. Нуклеоид
  9. Цитоплазма
  10. Капсула
  11. Жгутики
  12. Плазмиды
  13. Пили, ворсинки, фимбрии
  14. Споры
  15. Лизосомы в биологии – особенности строения и основные функции – Помощник для школьников Спринт-Олимпик.ру
  16. Форма простейших
  17. Ферменты вида
  18. Образование органелл
  19. Эндоцитоз и образование
  20. Фагоцитоз и аутофагия
  21. Патофизиологическая роль
  22. Функциональные механизмы
  23. Строение и структура клетки бактерии
  24. Понятие бактерии
  25. Клеточная структура бактерий
  26. Плазмолемма
  27. Пили
  28. Клетки бактерий не имеют оформленного ядра, плотной клеточной стенки, чем они отличаются от клеток растений, животных и грибов
  29. Основное отличие ─ отсутствие оформленного ядра
  30. Особенности в передаче наследственной информации
  31. Каких органоидов нет у микроорганизмов
  32. Лизосомы
  33. Пластиды
  34. Митохондрии
  35. Комплекс Гольджи
  36. Эндоплазматическая сеть
  37. Отличия в жизнедеятельности клеток прокариотов и эукариотов
  38. Движение цитоплазмы
  39. Дыхание
  40. Процесс фотосинтеза
  41. Фагоцитоз и пиноцитоз
  42. Спорообразование
  43. Размножение

Просто о структуре бактерий

Лизосомы в бактериальной клетке

Обязательными структурными элементами бактерий являются: цитоплазма с нуклеоидом и рибосомами, цитоплазматическая мембрана (ЦПМ), клеточная стенка.

Цитоплазма прокариотов в отличие от эукариотов не содержит митохондрий и хлоропластов, аппарата Гольджи, лизосом, эндоплазматической сети. Нуклеоид выполняет в клетке бактерий функцию ядра, т.е.

является носителем генетической информации, однако, в отличие от ядра эукариотической клетки, он не имеет ядерной мембраны, не делится митозом. Нуклеоид состоит из замкнутой в кольцо нити ДНК. В генетическом отношении ДНК нуклеоида является единственной бактериальной хромосомой.

В связи с этим бактерии имеют гаплоидный набор генов, контроли­рующих все их жизненно важные функции. Органеллы цитоплазмы выявляются при электронной микроскопии.

Цитоплазматическая мембрана ограничивает снаружи цитоплазму и состоит из тонкого слоя фосфолипидов и белка.

Функции ЦПМ: получение энергии в результате биологического окисле­ния, участие в питании посредством активного транспорта веществ, участие в биосинтезе веществ, делении клетки.

В состав ЦПМ входят окислительные ферменты, пермеазы, различные биосинтетические ферменты. ЦПМ выявляют при электронной микроскопии.

Клеточная стенка у Гр+ бактерии, как правило, содержит многослойный пептидогликан, который придает клеточной стенке прочность.

Клеточная стенка определяет форму бактерий, служит для механической защиты, участвует в питании за счет диффузии и осмоса.

У Гр- бактерий клеточная стенка представлена тонким слоем пептидогликана, покрытого наружной мембраной, в состав которой входят белки, фосфолипиды и липополисахариды (ЛПС).

Наружная мембрана клеточной стенки патогенных микробов во многом определяет специфичность их взаимодействия с организмом хозяина и помогает в распознавании близкородственных микробов.

По компонентам и структуре клеточной стенки, биохимическим ме­ханизмам ее синтеза бактерии коренным образом отличаются от животных и растений. Поэтому лекарственные препараты, специфически воздействующие, например, на бактериальные стенки, безвредны для высших организмов. Клеточную стенку бактерий выявляют при электронной мик­роскопии, специальным окрашиванием или в опыте плазмолиза.

Необязательные структурные элементы.                   

К ним относят;   капсулу, спору, включения, жгутики, пили.

Капсула представляет собой поверхностно расположенное слизистое образование, которое по химической природе чаще является полисахаридом.

Капсула выполняет защитную функцию, пре­дохраняя клетку во внешней среде от высыхания и других неблагоприятных факторов, а в орга­низме хозяина — от фагоцитоза, бактериолизиса и других реакций, лекарственных препаратов. Бак­терии, образующие капсулу в организме и на питательных средах, называют капсульными (например, клебсиеллы пневмонии).

Некоторые бактерии образуют макрокапсулу только в орга­низме (золотистый стафилококк, стрептококк пневмонии, палочка сибирской язвы, возбудитель чумы, туляремии и др.). Многие бактерии образуют микрокапсулу: возбудитель коклюша, пато­генные энтеробактерии и др.

Капсулу выявляют методом Бурри-Гинса: бактерии смешивают с ка­плей туши, распределяют их по стеклу виде тонкого мазка и фиксируют. После окрашивания раз­веденным карболовым фуксином в световом микроскопе на серо-коричневом (тушевом) фоне препарата видны красные тела бактерий, окруженные бесцветными зонами капсул.

Споры являются формой существования, предназначенной для сохранения бактерий во внешней среде. В одной бактериальной клетке в течение 12-18 часов формируется 1 спора, которая при благоприятных условиях за 4-6 часов прорастает в I вегетативную клетку.

Спорообразующими являются, как правило, Гр+ палочковидные бактерии: те, у которых диаметр споры не превышает поперечный размер клетки, называют бациллами, те, у которых диаметр больше — клостридиями.

Устойчивость спор к неблагоприятным физико-химическим воздействиям связана с наличием мно­гослойной оболочки, повышенным содержанием липидов, ионов кальция, магния, вода в связан­ном состоянии. Жизнеспособность спор при обычных условиях может сохраняться в течение деся­тилетий и столетий.

Для уничтожения спор применяют методы стерилизации (пар под давлением, горячий воздух и др.). Споры окрашиваются плохо. Для выявления используют сложные методы окраски (по Циль-Нильсону, Ожешке и др.)

Включения. В клетках прокариотов можно обнаружить включения (скопления полисахари­дов, липидов, полифосфатов, серы). У дифтерийной палочки и некоторых других бактерий в цито­плазме обнаруживаются зёрна волютина (полифосфаты), выполняющие функцию запасного веще­ства (источника фосфора и энергии).

Включения и цитоплазма по-разному окрашиваются одними и теми же красителями. Например, при окраске уксусно-кислым генцианвиолетом цитоплазма у дифтерийной палочки окрашивается в бледно-фиолетовый цвет, а расположенные по полюсам зер­на волютина — в темно-фиолетовый.

Обнаружение зерен волютина имеет диагностическое значение.

Жгутики — являются поверхностными придатками бактериальной клетки, состоят из белка флагеллина и выполняет функцию движения.

Наиболее подвижки микробы с 1 жгутиком — монотрихи (холерный вибрион) менее подвижны микробы с пучком жгутиков на одном из полюсов — лофотрихи (синегнойная палочка) или имеющие жгутики на обоих полюсах — амфитрихи; наименее подвижны перитрихи, у которых жгутики расположены по бокам или по, всей поверхности (мно­гие энтеробактерии). В световом микроскопе жгутики не видны. Для их выявления используют прямые методы: электронную микроскопию или специальное окрашивание, позволяющие увели­чить размеры жгутиков, например, за счет наслоения солей тяжелых металлов. С целью косвенного выявления жгутиков изучают подвижность микробных клеток. Для этого готовят нативные препараты (раздавленная или висячая капля), которые микроскопируют в затемненном поле зрения, темнопольном или фазовоконтрастном микроскопах.

Пили также являются поверхностными придатками бактериальной клетки и представляют со­бой тончайшие нити (тоньше и короче жгутиков), состоят из белка пилина.

Функцией пилей являются прикрепление к субстрату; они также способствуют контакту клетки — донора с клеткой — реципиентом при конъюгации. Наличие пилей у патогенных микробов во многом определяет их способность вызывать заболевание, т.к.

они необходимы для осуществления адгезии (прилипания). Прямое выявление пилей возможно только при электронной микроскопии.

Химический состав бактериальной клетки.

Основными веществами, входящими в ее состав являются: вода(свободная и связанная), нук­леиновые кислоты (ДНК и РНК), белки, углеводы, липиды и минеральные соли.

Свободная вода, являясь универсальной дисперсионной средой, участвует в метаболизме, связанная вода — опреде­ляет устойчивость клетки к физическим факторам. Нуклеиновые кислоты являются носителями наследственной информации.

Белки входят в состав различных структур бактериальной клетки, являются составной частью ферментов, токсинов, антигенов, определяют отношение к красителям, лекарственным и дезинфицирующим веществам.

Углеводы являются источником энергии, и, наря­ду с белками, могут определять специфичность бактерий. Липиды определяют заряд клетки и про­ницаемость мембран, устойчивость к кислотам, щелочам, спиртам, а также токсичность микроба.

Источник: https://easymedicine.ru/struktura-bakterialnoj-kletki.html

Бактерии — Строение клетки бактерии и и химический состав, фото

Лизосомы в бактериальной клетке

Последнее обновление – 16 ноября 2017 в 19:52

Время на чтение: 6 мин

Современная наука достигла фантастического прогресса за последние столетия. Однако, некоторые загадки до сих пор будоражат умы выдающихся ученых.

В наши дни так и не найден ответ на актуальный вопрос – сколько же разновидностей бактерий существует на нашей огромной планете?

Бактерия – организм с уникальной внутренней организацией, которому свойственны все процессы, характерные живым организмам. Бактериальная клетка имеет множество удивительных особенностей, одна из которых – разнообразие форм.

https://www.youtube.com/watch?v=aBOgFldmtko

Клетка бактерии может обладать сферической, палочковидной, кубической или звездчатой формой. Кроме того, бактерии бывают немного согнуты или формируют разнообразные завитки.

Форма клетки играет важную роль для правильного функционирования микроорганизма, так как она может влиять на возможность бактерии прикрепляться к другим поверхностям, получать необходимые вещества и передвигаться.

Минимальный клеточный размер обычно составляет 0,5 мкм, однако в исключительных случаях величина бактерии может достигать 5,0 мкм.

Структура бактериальной клетки

Строение клетки любой бактерии строго упорядочено. Ее структура значительно отличается от структуры остальных клеток, например растений и животных. Клетки всех видов бактерий не имеют такие элементы, как: дифференцированное ядро, внутриклеточные мембраны, митохондрии, лизосомы.

У бактерий имеются специфические структурные компоненты – постоянные и непостоянные.

К постоянным компонентам относятся: цитоплазматическая мембрана (плазмолемма), клеточная стенка, нуклеоид, цитоплазма. Непостоянными структурами являются: капсула, жгутики, плазмиды, пили, ворсинки, фимбрии, споры.

Цитоплазматическая мембрана

Любую бактерию обволакивает цитоплазматическая мембрана (плазмолемма), которая включает в себя 3 слоя. Мембрана содержит глобулины, отвечающие за выборочную транспортировку разнообразных субстанций в клетку.

Плазмолемма выполняет также следующие важные функции:

  • механическая – обеспечивает автономное функционирование бактерии и всех структурных элементов;
  • рецепторная – белки, находящиеся в плазмолемме, выступают в качестве рецепторов, то есть помогают клетке воспринимать различные сигналы;
  • энергетическая – некоторые белки отвечают за функцию переноса энергии.

Нарушение функционирования плазмолеммы ведет к тому, что бактерия разрушается и погибает.

Клеточная стенка

Структурный компонент, присущий только бактериальным клеткам – клеточная стенка. Это жесткая проницаемая оболочка, которая выступает в роли важней составляющей структурного скелета клетки. Располагается она с внешней стороны от цитоплазматической мембраны.

Клеточная стенка реализует функцию защиты, а кроме того придает клетке постоянную форму. Ее поверхность покрывают многочисленные споры, которые пропускают внутрь необходимые вещества и выводят из микроорганизма продукты распада.

Защита внутренних составляющих от осмотического и механического воздействия – еще одна функция стенки. Она играет незаменимую роль в контроле деления клетки и распределении в ней наследственных признаков. В ее составе содержится пептидогликан, именно он наделяет клетку ценными иммунобиологическими характеристиками.

Толщина клеточной стенки колеблется от 0,01 до 0,04 мкм. С возрастом происходит рост бактерии и количество материала, из которого она построена, соответственно, увеличивается.

Нуклеоид

Нуклеоид – это прокариот, в котором хранится вся наследственная информация бактериальной клетки. Нуклеоид располагается в центральной части бактерии. По своим свойствам он эквивалентен ядру.

Нуклеоид – это одна, замкнутая в кольцо, молекула ДНК. Длина молекулы составляет 1 мм, а объем информации – около 1000 признаков.

Нуклеоид является главным носителем материала о свойствах бактерии и основным фактором передачи этих свойств потомству. Нуклеоид в клетках бактерий не имеет ядрышка, мембраны и основных белков.

Цитоплазма

Цитоплазма – водный раствор, включающий следующие компоненты: минеральные соединения, питательные вещества, белки, углеводы и липиды. Соотношение данных веществ зависит от возраста и типа бактерий.

В цитоплазму входят различные структурные компоненты: рибосомы, гранулы и мезосомы.

  • Рибосомы отвечают за синтез белка. Их химический состав включает молекулы РНК и белок.
  • Мезосомы участвуют в образовании спор и размножении клеток. Могут иметь форму пузырька, петли, трубочки.
  • Гранулы служат дополнительным ресурсом энергии для бактериальных клеток. Эти элементы бывают разнообразных форм. В их составе представлены полисахариды, крахмал, капельки жира.

Капсула

Капсула – это слизистая структура, крепко связанная с клеточной стенкой. Исследуя ее под световым микроскопом, можно заметить, что капсула обволакивает клетку и ее внешние границы имеют четко очерченный контур. В бактериальной клетке капсула служит защитным барьером от фагов (вирусов).

Бактерии формируют капсулу, когда условия внешней среды становятся агрессивными. Капсула включает в свой состав в основном полисахариды, а также в определенных случаях в ней может содержаться клетчатка, гликопротеины, полипептиды.

Основные функции капсулы:

    • адгезия с клетками в организме человека. Например, стрептококки слипаются с эмалью зубов и в союзе с другими микробами провоцируют появление кариеса;
    • защита от негативных условий окружающей среды: токсических веществ, механических повреждений, повышенного уровня кислорода;
    • участие в водном обмене (защита клетки от высыхания);
    • создание дополнительной осмотической преграды.

Капсула формирует 2 слоя:

  • внутренний – часть слоя цитоплазмы;
  • наружный – результат выделительной функции бактерии.

В основу классификации легли особенности строения капсул. Они бывают:

  • нормальные;
  • сложные капсулы;
  • с поперечно-полосатыми фибриллами;
  • прерывистые капсулы.

Некоторые бактерии образуют также микрокапсулу, которая представляет собой слизистое образование. Выявить микрокапсулу можно только под электронным микроскопом, поскольку толщина этого элемента всего 0,2 мкм или даже меньше.

Жгутики

Большинство бактерий имеют поверхностные структуры клетки, которые обеспечивают ее подвижность и передвижение – жгутики. Это длинные отростки в форме левозакрученной спирали, построенные из флагеллина (сократительный белок).

Основная функция жгутиков заключается в том, что они позволяют бактерии передвигаться в жидкой среде в поисках более благоприятных условий. Количество жгутиков в одной клетке может варьироваться: от одного до нескольких жгутиков, жгутиков на всей поверхности клетки или только на одном из ее полюсов.

Существует несколько разновидностей бактерий в зависимости от количества в них жгутиков:

  • Монотрихи – у них имеется только один жгутик.
  • Лофотрихи – имеют определенное количество жгутиков на одном конце бактерии.
  • Амфитрихи – характеризуются наличием жгутиков на полярно противоположных полюсах.
  • Перитрихи – жгутики располагаются по всей поверхности бактерии, им характерно медленно и плавное движение.
  • Атрихи – жгутики отсутствуют.

Жгутики совершают двигательную активность, совершая вращательные движения. Если у бактерий нет жгутиков – она все равно в состоянии перемещаться, а точнее скользить при помощи слизи на поверхности клетки.

Плазмиды

Плазмиды представляют собой небольшие мобильные молекулы ДНК, отдельные от хромосомных факторов наследственности. Эти компоненты обычно содержат генетический материал, повышающий невосприимчивость бактерии к антибиотикам.

Могут передавать свои свойства от одного микроорганизма к другим. Несмотря на все свои особенности, плазмиды не выступают в качестве важных элементов для жизнедеятельности бактериальной клетки.

Пили, ворсинки, фимбрии

Эти структуры локализуются на поверхностях бактерий. Насчитывают от двух единиц до нескольких тысяч на одну клетку. Эти структурные элементы имеет как бактериальная подвижная клетка, так и неподвижная, поскольку они не оказывают никакого влияния на способность передвигаться.

В количественном отношении, пили достигают несколько сотен на одну бактерию. Существуют пили, которые отвечают за питание, водно-солевой обмен, а также конъюгационные (половые) пили.

Ворсинкам характерна полая цилиндрическая форма. Именно через эти структуры в бактерию проникают вирусы.

Ворсинки не считаются обязательными компонентами бактерии, так как и без них может успешно совершаться процесс деления и роста.

Фимбрии располагаются, как правило, на одном конце клетки. Эти структуры позволяют микроорганизму фиксироваться в тканях организма. Некоторые фимбрии имеют особые белки, контактирующие с рецепторными окончаниями клеток.

Фимбрии отличаются от жгутиков тем, что они толще и короче, а также не реализуют функцию движения.

Споры

Споры образуются в случае негативных физических или химических манипуляций над бактерией (в результате высушивания или нехватки питательных веществ). Они разнообразны по размеру спор, так как у различных клеток они могут быть совершенно разным. Различается также и форма спор – они бывают овальными или шаровидными.

По местоположению в клетке споры подразделяются на:

  • центральные – их положение в самом центре, как например, у сибиреязвенной палочки;
  • субтерминальные – располагаются на конце палочки, придавая форму булавы (у возбудителя газовой гангрены).

В благоприятной среде жизненный цикл спор включает следующие этапы:

  • подготовительный этап;
  • этап активации;
  • этап инициации;
  • этап прорастания.

Споры отличаются особой живучестью, которая достигается благодаря своей оболочке. Она многослойна и состоит преимущественно из белка. Повышенная невосприимчивость спор к негативным условиям и внешним воздействиям обеспечивается именно благодаря белкам.

Источник: https://GemoParazit.ru/bakterii/stroenie-kletki-bakterii

Лизосомы в биологии – особенности строения и основные функции – Помощник для школьников Спринт-Олимпик.ру

Лизосомы в бактериальной клетке

Лизосомы — это мембранные органеллы, содержащие множество ферментов, способных разрушать все типы биологических полимеров — белки, нуклеиновые кислоты, углеводы и липиды. Они функционируют как пищеварительная система, служа как для деградации материала, взятого извне клетки, так и для переваривания устаревших компонентов. Строение и функции лизосом могут быть определённого типа.

Форма простейших

В своей форме лизосомы визуализируют в виде плотных шаровидных вакуоли, но они могут показывать значительные отличия размера, в зависимости от материалов, которые были приняты для пищеварения (см.рисунок).

Из таблицы строения и функций лизосом видно, что они обычно сферической формы, с диаметром от 0,05 до 0,5 мкм.

На электронных микрофотографиях они имеют форму равномерно-зернистых, электронно-плотных структур (см. схему).

Таким образом, особенности строения лизосом в том, что они представляют собой морфологически разнообразные органеллы, проводят определение общей функции деградации внутриклеточного материала.

Это цитоплазматические внутриорганические органеллы, принадлежащие к эндомембранной системе, содержащей ферменты (кислотные гидролазы), которые разрушают многие биологические молекулы.

Они встречаются во всех клетках, но чаще — в ответственных за защиту организма: макрофагах, нейтрофильных полинуклеарных или очень специализированных клетках, таких как остеокласты.

Первичный видимый в оптической и электронной микроскопии гетерогенный вид лизосом обнаруживается гистоэнзимологической окраской кислой фосфатазы.

Ферменты вида

Лизосомы содержат около 50 различных разлагающих комплексов ферментов, которые могут гидролизовать белки, ДНК, РНК, полисахариды и липиды.

Мутации в генах, что кодируют эти ферменты, ответственны за более чем 30 различных генетических заболеваний человека, которые называются лизосомальными заболеваниями хранения, потому что необработанный материал накапливается.

Большинство из этих остаточных заболеваний является результатом дефицита отдельных химических лизосомальных ферментов. Например:

  • Болезнь под названием Гоше (наиболее распространённое из этих расстройств) является результатом мутации в гене, который кодирует лизосомальный фермент, необходимый для расщепления гликолипидов.
  • Клеточное заболевание, которое вызвано дефицитом фермента, катализирующего первый этап мечения лизосомальных ферментов маннозой-6-фосфатом в аппарате Гольджи.

Это всё результат общей неспособности лизосомальных ферментов, которые должны быть включены в органеллах.

Все лизосомальные ферменты являются гидролазами, что активны при рН (около 5), который поддерживается в лизосомах, но не при нейтральном показателе (около 7,2), характерном для остальной цитоплазмы.

Требование этих лизосомальных гидролаз для кислотного рН обеспечивает двойную защиту против неконтролируемого пищеварения содержания цитозоля.

Даже если лизосомальная мембрана опущена, выпущенные кисловочные гидролазы были бы неактивны на нейтральном рН цитозоля.

Для поддержания кислотного внутреннего рН лизосомы должны активно концентрировать ионы H+ (протоны). Это достигается протонным насосом в лизосомальной мембране, который активно транспортирует протоны в лизосому из цитозоля.

Эта перекачка требует затрат энергии в виде гидролиза АТФ, так как она поддерживает примерно в сто раз более высокую концентрацию H+ внутри лизосомы.

Органоиды содержат различные кислотные гидролазы, которые активны при кислотном рН, поддерживаемом в органелле, но не при нейтральном рН цитозоля.

Образование органелл

Одной из основных функций лизосом является переваривание материала, взятого извне клетки эндоцитозом.

Однако роль органелл в переваривании материала, принимаемого эндоцитозом, связана не только с функцией органелл, но и с их образованием.

В частности, лизосомы образуются путём слияния транспортных везикул, почковавшихся из транс-Гольджи сети с эндосомами, которые содержат молекулы, принятые эндоцитозом на плазматической мембране.

Нужно выяснить, где формируются лизосомы и в чём их отличие в биологии.

Появление органелл представляет собой пересечение секреторных путей (через них обрабатываются лизосомальные белки) и эндоцитозного пути, через которые молекулы внеклеточного занимают место на поверхности клетки.

Материал извне клетки берётся в покрытых клатрином эндоцитарных везикулах, которые распускаются из плазматической мембраны и затем сливаются с ранними эндосомами.

Компоненты затем рециркулируются в плазматическую мембрану и ранние эндосомы постепенно созревают в поздние, которые являются предшественниками лизосом. Одним из важных изменений во время созревания эндосомы является снижение внутреннего рН примерно до 5,5, что играет ключевую роль в доставке лизосомальных кислотных гидролаз из сети транс-гольджи.

Эндоцитоз и образование

Молекулы берутся извне клетки в эндоцитарных везикулах, которые сливаются с ранними эндосомами. Мембранные компоненты перерабатываются по мере созревания ранних эндосом в поздние.

Кислотные гидролазы нацелены на лизосомы остатками манноза-6-фосфата, которые распознаются рецепторами манноза-6-фосфата в сети транс-Гольджи и упаковываются в клатрин-покрытые везикулы. После удаления слоя клатрина эти транспортные везикулы сливаются с поздними эндосомами, а кислотный внутренний рН приводит к диссоциации гидролаз с рецептором манноза-6-фосфата.

Таким образом, гидролазы высвобождаются в просвет эндосомы, в то время как рецепторы остаются в мембране и в итоге рециркулируются в Гольджи. Поздние эндосомы затем созревают в лизосомы, поскольку они приобретают полный набор кислотных гидролаз, которые переваривают молекулы, первоначально принятые эндоцитозом.

Фагоцитоз и аутофагия

Помимо деградирующих молекул, поглощаемых эндоцитозом, лизосомы переваривают материал, полученный двумя другими путями — фагоцитозом и аутофагией. При фагоцитозе специализированные клетки, такие как макрофаги, поглощают и разрушают крупные частицы, включая бактерии, клеточный мусор и старые клетки, которые необходимо удалить из организма.

Такие крупные частицы попадают в фагоцитарные вакуоли (фагосомы), которые затем сливаются с лизосомами, в результате чего происходит переваривание их содержимого. Образующиеся таким образом лизосомы (фаголизосомы) могут быть довольно крупными и неоднородными, так как их размер и форма определяются содержанием перевариваемого материала.

При фагоцитозе крупные частицы, например, бактерии, попадают в фагоцитарные вакуоли или фагосомы. В аутофагии внутренние органеллы, например, митохондрии, заключены в мембранные фрагменты из ER.

Лизосомы также отвечают за аутофагию — постепенный оборот собственных компонентов клетки. Первым шагом аутофагии, по-видимому, является включение органеллы (например, митохондрии) в мембрану, полученную из ER. Образовавшийся пузырёк затем сливается с лизосомой, его содержимое переваривается.

Патофизиологическая роль

У многих примитивных одноклеточных и беспозвоночных микроорганизмов роль лизосом, в первую очередь, питательная.

Гетерофагия используется для захвата и переваривания экзогенных продуктов, аутофагия — для контролируемого использования чистых клеточных компонентов в случае нехватки пищи.

Эта функция потеряла значение у высших животных, где она действует только для некоторых конкретных питательных веществ, таких как холестерин. С другой стороны, лизосомальное пищеварение подходит для многих специализированных функций.

Таким образом, в зависимости от клеточного типа, гетерофагический механизм служит:

  • для защиты от захватчиков;
  • очистки альвеол лёгких;
  • реабсорбции почек;
  • перестановки костей;
  • катаболизма белков плазмы;
  • регуляции гормональных эффектов;
  • синтеза гормонов щитовидной железы и многих других физиологических процессов.

Аутофагия играет очень общую роль в многочисленных аутолитических явлениях, которые происходят в обновлении клеточных составляющих, а также в адаптации, дифференциации и развитии растительных компонентов.

Лизосомы часто могут находиться и участвовать в формировании генеза патологических состояний. Гидролазы, которые они размещают, могут повредить цитоплазму, когда они высвобождаются внутри клетки или внеклеточные структуры, если они сбрасываются снаружи.

Кроме того, перегрузка лизосом непереваренными материалами и последующее расширение могут поставить под угрозу нормальную клеточную функцию.

Благодаря выяснению этих механизмов, многие заболевания оказались проявлениями клеточной пищеварительной патологии:

  • внутриклеточные выделения лизосомального содержимого (клеточные структуры повреждаются и часто клетки погибают) ;
  • силикозы, воспаления, интоксикации лизосомотропными веществами.

Функциональные механизмы

Лизосомы играют важную роль во внутриклеточном пищеварении. Этот процесс происходит в вакуолях, ограниченных мембраной, вторичными лизосомами, в пределах которых кислотный рН в диапазоне от 4,5 до 5,0, соответствующий требованиям лизосомиальных гидролаз, активно поддерживается протонным насосом, расположенным в мембране.

Эта кислотность объясняет «лизосомотропизм» очень многих слабо основных соединений: они концентрируются в лизосомах с протонацией и приводят к таким явлениям, как жизненная окраска (например, нейтральный красный, оранжевый акридин), вакуолизация осмотическим вызовом воды, например, хлорохин, и различные фармакологические эффекты.

Исключительно гидролазы и лизосомиальная кислотность сбрасываются во внеклеточную полость, где они выполняют своё пищеварительное действие. Субстраты лизосомального пищеварения поступают извне или изнутри клетки.

В первом случае (гетерофагия) захват материалов осуществляется фагоцитозом, пиноцитозом или любой другой формой эндоцитоза, т. е.

процессом, включающим инвагинацию плазматической мембраны, которая закрывается вокруг захваченного материала и отделяется в цитоплазме в виде герметичной вакуоли, содержащей этот материал.

Объекты и молекулы, охватываемые таким образом, часто фиксируются специфическими рецепторами, расположенными на плазматической мембране (эндоцитоз интерпозированным рецептором).

Это явление позволяет клеткам выбирать определённые питательные вещества в их окружающей среде, например, липопротеины низкой плотности, несущие холестерин.

Это даёт им, кроме того, способ ограничивать действие гормонов и других активных агентов.

ПредыдущаяСледующая

Источник: https://Sprint-Olympic.ru/uroki/biologija/82351-lizosomy-v-biologii-osobennosti-stroeniia-i-osnovnye-fynkcii.html

Строение и структура клетки бактерии

Лизосомы в бактериальной клетке

Несмотря на высокий уровень развития науки, для нее остается еще много неизведанного. В мире существует огромное количество бактерий, но никто точно не может назвать их количество. Часть бактерий остается нераскрытой и сегодня. Описано чуть больше десяти тысяч разновидностей бактерий.

До сих пор ученые не могут назвать, сколько существует в мире древнейших уникальных живых организмов – бактерий.

Понятие бактерии

Бактерии – самые мелкие живые организмы, известные научному миру, со своей структурой и процессами жизнедеятельности. Клетки бактерий отличаются разнообразием форм.

Можно выделить: звездчатую, сферическую, кубическую и палочковидную формы. На жизнедеятельность бактерий влияет форма клетки, она бывает согнутой или завивающейся. Это помогает бактерии крепиться к поверхности определенным образом.

Размер бактерии может колебаться от 0,5 мкм до 5,0 мкм.

Чаще всего бактерии бывают одноклеточными. Они не имеют ядра в своей структуре. Поэтому отнесены к прокариотам. Ядро в клетке бактерии занимают нуклеоиды. Многоклеточность не свойственна бактериям. Тем не менее, некоторые из них могут соединяться с другими бактериями, тем самым образуя многоклеточную структуру.

Передвигаются бактерии, как правило, при помощи жгутиков методом скольжения или извиваясь. Есть неподвижные бактерии, но есть и такие, которые способны передвигаться, не имея жгутиков. Они двигаются по поверхности воды.

Бактерии – относительно просто устроенные живые организмы, которые не имеют ядра.

Бактерии могут размножаться при помощи деления, почкования, некоторые используют половые процессы. Редким видом является множественное деление бактерий. При этом используется ряд бинарных делений. Это позволяет бактериям быстро размножаться. При половом процессе не происходит слияния клеток.

Не все бактерии патогенны для человека. Многие из них участвуют в ежедневной жизнедеятельности человека, принося пользу. К ним относятся, например, молочнокислые бактерии, используемые при создании сыров, йогуртов, сметаны и прочего.

Бактерии появились на Земле приблизительно четыре миллиарда лет назад. Изучает бактерии микробиология, точнее, ее подраздел бактериология.

Клеточная структура бактерий

Строение клетки бактерии значительно отличается от остальных клеток, животных или растительных.

Структура бактериальной клетки включает в себя: лизосомы, внутриклеточные мембраны, дифференцированное ядро, митохондрии. Кроме этого, клетки бактерий имеют постоянные и непостоянные компоненты. К постоянным относятся: цитоплазма, плазмолемма, нуклеоид и клеточные стенки. К непостоянным – жгутики, пили, капсула, плазмиды, споры, ворсинки, фимбрии.

Плазмолемма

Чаще всего плазмолемму называют цитоплазматической мембраной. Она окружает любую бактериальную клетку и состоит из трех слоев. функция плазмолеммы – транспортировка различных субстанций внутрь клетки.

Цитоплазматическая мембрана ответственна за выполнение функций:

  • энергетической, которая заключается в переносе энергии при помощи нескольких белков;
  • механической, обеспечивающей функционирование бактерий и всех ее элементов в автономном режиме;
  • рецепторной – при помощи рецепторов мембрана передает клетке сигналы.

Если плазмолемма функционирует неправильно, то бактерия погибает.

Плазмолемма является постоянным компонентом клетки бактерии и выполняет жизненно важные для клетки функции.

Пили

Кроме жгутиков, у клеток бактерии наблюдаются и другие внеклеточные образования. Эти части называют ворсинками, или фимбриями. Эти названия сейчас встречаются редко. Чаще всего можно услышать термин «пили», объединяющий эти понятия.

Внешне ворсинки представляют собой отростки, которые покрывают бактерию сверху. В отличие от жгутиков ворсинки меньше. Их количество на клетке может насчитывать несколько тысяч. Эти пили отвечают за питание, половые функции и регуляцию водно-солевого баланса.

Различные полые нитевидные ворсинки на поверхности клетки бактерии называют «пили».

Для пилий характерна форма ворсинок, полых изнутри. Они необязательны, поэтому нередки случаи, когда они отсутствуют на бактериальной клетке.

Фимбрии, в отличие от ворсинок, покрывают одну сторону. Они более толстые и плотные, нежели жгутики, и не участвуют в процессе движения бактерии, но способны прикрепляться к поверхностям.

Источник: https://proinfekcii.ru/parazity/bakterii/struktura-kletki-bakterii.html

Клетки бактерий не имеют оформленного ядра, плотной клеточной стенки, чем они отличаются от клеток растений, животных и грибов

Лизосомы в бактериальной клетке

Все живые организмы на Земле состоят из клеток. Это может быть и как самостоятельная единица жизни, и как составляющая более сложных по своей организации организмов. Многое из того, что имеют клетки высших организмов, клетки бактерий (прокариотов) не имеют.

Основное отличие ─ отсутствие оформленного ядра

Основное отличие клеток бактерий от клеток эукариотов (растения, животные и грибы) состоит в том, что они не имеют четко оформленного ядра. Вся генетическая информация у бактерий находится в особом белковом комплексе, называемом нуклеоидом.

Несмотря на примитивное строение, нуклеоид способен точно и четко передавать генетические данные от одного поколения к другому. ДНК микроорганизмов является высокополимерным соединением, которое состоит из определенного числа нуклеоидов, находящихся между собой в точной последовательности.

При нарушениях этой последовательности происходит мутация вида, что приводит либо к образованию новой формы, либо к приобретению или утрате каких-либо свойств.

Особенности в передаче наследственной информации

У животных и растений для каждого вида есть четко оформленное ядро и определенное количество хромосом, которые отвечают за передачу наследственной информации.

Бактерии же, не имея четко оформленного ядра и имея только одну хромосому, лишены признаков такого явления, как доминантность. Хромосома имеет вид свернутой в кольцо спирали и прикреплена к мембране цитоплазмы в одной точке.

Встречаются виды с наличием 2 или 4 хромосом, но они одинаковы. Помимо хромосом, генотип микроорганизмов включает в себя и такие функциональные единицы:

  • плазмиды (содержат малое количество генов, их состав непостоянен);
  • IS-последовательности не несут в себе генов, ответственных за информацию, способны передвигаться по хромосоме и вклиниваться в любой ее участок;
  • транспозоны (содержат структурный ген, который отвечает за тот или иной наследственный признак).

Высокая скорость размножения (за сутки происходит смена десятков поколений) позволяет изучать и выявлять мутационные процессы и изменения в видах.

Бактерии не имеют производной хромосом ─ ядрышек, которые есть у животных, растений, простейших и грибов. В них образуются рибосомы и РНК. Число ядрышек зависит от баланса генов.

Каких органоидов нет у микроорганизмов

В отличие от клеток животных, растений и грибов клетки бактерий (прокариотов) не имеют следующих органелл:

  • лизосомы;
  • пластиды;
  • митохондрии;
  • комплекс Гольджи;
  • эндоплазматическая сеть.

Лизосомы

Клеточный органоид, который содержит ферменты, способствующие расщеплению белков, полисахаридов и нуклеиновых кислот. Основная их функция заключается в том, что они участвуют во внутриклеточном расщеплении.

Пластиды

Этих органоидов нет у животных, а их наличие у растений обуславливает их окраску. Основное их предназначение – участие в процессах фотосинтеза.

Митохондрии

Наличие этих органоидов в клетках растений и животных позволяет обеспечивать необходимой энергией за счет окислительно-восстановительных процессов. Также они способны передавать генетическую информацию.

Комплекс Гольджи

Функция этих органоидов заключается в накоплении, изменении и последующем выведении веществ из клеток растений и животных.

Эндоплазматическая сеть

Является клеточным органоидом, состоящим из системы канальцев и пузырьков. Находится в цитоплазме и ограничена мембраной. Она участвует в метаболических процессах, обеспечивая транспортировку веществ извне в цитоплазму.

У микроорганизмов многие функции этих органоидов выполняет мезосома. Эта структура образуется в результате втягивания внутрь клеточной мембраны. Она участвует в репликации ДНК, в создании клеточных перегородок и в ряде других процессов жизнедеятельности.

Отличия в жизнедеятельности клеток прокариотов и эукариотов

Клетки микроорганизмов отличаются от клеток животных, растений и грибов не только по своему строению, они имеют свои особенности в жизнедеятельности.

Движение цитоплазмы

Этот процесс называется циклозом. Он присущ всем эукариотам. Движение цитоплазмы необходимо для таких процессов, как:

  • получение питательных веществ;
  • метаболизм;
  • передача генетических данных;
  • равномерное распределение питательных веществ.

Циклоз может быть постоянным, спонтанным либо спровоцированным внешними факторами (температурой, уровнем освещения, механическим или химическим воздействием). У бактерий такое понятие, как движение цитоплазмы, полностью отсутствует.

Дыхание

Бактерии – уникальные микроорганизмы, способные существовать как при наличии кислорода, так и без него. Многим из них, так же как растениям и животным, для метаболических процессов необходим кислород. Разница в том, что у эукариотов дыхание происходит в митохондриях, а у бактерий задействованы мезосомы. У цианобактерий дыхание происходит в цитоплазматических мембранах.

Процесс фотосинтеза

Сине-зеленые микроорганизмы способны, так же как и растения, аккумулировать солнечную энергию и вырабатывать кислород, необходимый для жизни других организмов. Разница в том, что у бактерий процесс фотосинтеза происходит на мембранах, а у растений в хлоропластах.

Фагоцитоз и пиноцитоз

У бактерий нет плотной клеточной стенки, поэтому такие физиологические процессы, как фагоцитоз и пиноцитоз, у них полностью отсутствуют. Фагоцитоз – это способность захватывать твердые частицы путем втягивания их внутрь. Пиноцитоз является схожим процессом, только внутрь клетки попадают жидкие вещества.

Спорообразование

Растения и грибы способны образовывать споры как один из способов размножения. Бактерии же образуют споры, когда возникают неблагоприятные условия для их жизни и развития. Эта особенность свойственна не всем видам. В состоянии спор микроорганизмы способны находиться долгое время, выдерживая кипячение, заморозку и другие негативные воздействия.

Размножение

Способ размножения бактерий достаточно прост: деление клетки надвое. Взрослая клетка делится на две молодые, которые растут, питаются и, достигая зрелости, в свою очередь также делятся. При благоприятных условиях одна бактериальная клетка способна за сутки произвести 72 поколения.

Клетки эукариотов, имея более сложную организацию, способны размножаться тремя способами:

Простота строения клетки бактерий позволила им быть первооткрывателями на нашей планете. Их способность существовать в любых условиях и в любых средах указывает на то, что они способны выжить там, где для других организмов жизнь будет невозможна.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Источник: https://probakterii.ru/prokaryotes/organelles/kletki-bakterij-ne-imeyut.html

О вашем здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: