Неживая вакцина

Содержание
  1. Виды вакцин
  2. Живые бактериальные
  3. Живые противовирусные
  4. Инактивированные антибактериальные вакцины
  5. Инактивированные противовирусные вакцины
  6. Анатоксины
  7. Виды вакцин и их сочетаемость
  8. Вакцины и собаки
  9. Итого, все вакцины можно разделить на живые и неживые.
  10. Живой вирус против гриппа. В чем отличие живой гриппозной вакцины от инактивированной и что такое коллективный иммунитет
  11. Ослабленный вирус
  12. Рецепт вакцины
  13. Коллективный иммунитет
  14. Сила в разнообразии
  15. Три мутации до пандемии
  16. Первые, новые, свои: какую из российских вакцин от COVID-19 выбрать
  17. Вакцина Института Гамалеи
  18. Вакцина центра«Вектор»
  19. Вакцина Института Чумакова
  20. Теория vs. практика
  21. ЭнцеВир Нео детский (Вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная сорбированная) – инструкция по применению
  22. Международное непатентованное наименование
  23. Лекарственная форма
  24. Состав
  25. Описание
  26. Фармакодинамика:
  27. Противопоказания:
  28. С осторожностью:
  29. Беременность и лактация:
  30. Способ применения и дозы:
  31. Побочные эффекты:
  32. Каков состав вакцин и можно ли делать несколько прививок в один день?
  33. Сравним вакцины с собаками?
  34. Сочетаемость вакцин
  35. «Менактра» и «Превенар»

Виды вакцин

Неживая вакцина

Открытие метода вакцинации дало старт новой эре борьбы с болезнями.

В состав прививочного материала входят убитые или сильно ослабленные микроорганизмы либо их компоненты (части). Они служат своеобразным муляжом, обучающим иммунную систему давать правильный ответ инфекционным атакам.

Вещества, входящие в состав вакцины (прививки), не способны вызвать полноценное заболевание, но могут дать возможность иммунитету запомнить характерные признаки микробов и при встрече с настоящим возбудителем быстро его определить и уничтожить.

Производство вакцин получило массовые масштабы в начале ХХ века, после того как фармацевты научились обезвреживать токсины бактерий. Процесс ослабления потенциальных возбудителей инфекций получил название аттенуации.

Сегодня медицина располагает более, чем 100 видами вакцин от десятков инфекций.

Препараты для иммунизации по основным характеристикам делятся на три основных класса.

  1. Живые вакцины. Защищают от полиомиелита, кори, краснухи, гриппа, эпидемического паротита, ветряной оспы, туберкулеза, ротавирусной инфекции. Основу препарата составляют ослабленные микроорганизмы — возбудители болезней. Их сил недостаточно для развития значительного недомогания у пациента, но хватает, чтобы выработать адекватный иммунный ответ.
  2. Инактивированные вакцины. Прививки против гриппа, брюшного тифа, клещевого энцефалита, бешенства, гепатита А, менингококковой инфекции и др. В составе мертвые (убитые) бактерии или их фрагменты.
  3. Анатоксины (токсоиды). Особым образом обработанные токсины бактерий. На их основе делают прививочный материал от коклюша, столбняка, дифтерии.

В последние годы появился еще один вид вакцин — молекулярные. Материалом для них становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии (рекомбининтная вакцина против вирусного гепатита В).

Живые бактериальные

Схема подходит для вакцины БЦЖ, БЦЖ-М.

Живые противовирусные

Схема подходит для производства вакцин от гриппа, ротавируса, герпеса I и II степеней, краснухи, ветряной оспы.

Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться:

  • куриные эмбрионы;
  • перепелиные эмбриональные фибробласты;
  • первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков);
  • перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293).

Первичный сырьевой материал очищают от клеточного дебриса в центрифугах и с помощью сложных фильтров.

Инактивированные антибактериальные вакцины

  • Культивация и очистка штаммов бактерий.
  • Инактивация биомассы.
  • Для расщепленных вакцин клетки микробов дезинтегрируют и осаждают антигены с последующим их хроматографическим выделением.
  • Для конъюгированных вакцин полученные при предыдущей обработке антигены (как правило, полисахаридные) сближают с белком-носителем (конъюгация).

Инактивированные противовирусные вакцины

  • Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться куриные эмбрионы, перепелиные эмбриональные фибробласты, первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков), перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293). Первичная очистка для удаления клеточного дебриса проводится методами ультрацентрифугирования и диафильтрации.
  • Для инактивации используются ультрафиолет, формалин, бета-пропиолактон.
  • В случае приготовления расщепленных или субъединичных вакцин полупродукт подвергают действию детергента с целью разрушить вирусные частицы, а затем выделяют специфические антигены тонкой хроматографией.
  • Человеческий сывороточный альбумин применяется для стабилизации полученного вещества.
  • Криопротекторы (в лиофилизатах): сахароза, поливинилпирролидон, желатин.

Схема подходит для производства прививочного материала против гепатита А, желтой лихорадки, бешенства, гриппа, полиомиелита, клещевого и японского энцефалитов.

Анатоксины

Для дезактивации вредного воздействия токсинов используют методы:

  • химический (обработка спиртом, ацетоном или формальдегидом);
  • физический (подогрев).

Схема подходит для производства вакцин против столбняка и дифтерии.

По данным Всемирной Организации Здравоохранения (ВОЗ), на долю инфекционных заболеваний приходится 25 % от общего количества смертей на планете ежегодно. То есть инфекции до сих пор остаются в списке главных причин, обрывающих жизнь человека.

Одним из факторов, способствующих распространению инфекционных и вирусных заболеваний, являются миграция потоков населения и туризм. Перемещение человеческих масс по планете влияет на уровень здоровья нации даже в таких высокоразвитых странах, как США, ОАЭ и государства Евросоюза.

«Наука и жизнь» № 3, 2006, «Вакцины: от Дженнера и Пастера до наших дней», академик РАМН В. В. Зверев, директор НИИ вакцин и сывороток им. И. И. Мечникова РАМН.

Источник: https://yaprivit.ru/o-vaccinah/

Виды вакцин и их сочетаемость

Неживая вакцина

Как мы уже говорили, вакцина служит для того, чтобы иммунная система ознакомилась с вражеской инфекцией и смогла быстро дать ей отпор при личной встрече.

Основными действующими компонентами современных вакцин могут быть:

1 ⏺ Ослабленный возбудитель (бактерия/вирус).

Для иммунной системы он выглядят почти точно также, как полноценный но вызвать заболевание не может, тк производитель вакцины его видоизменил (ослабил) так, что он перестал быть патогенным. Такая вакцина называется «живая». К ней относятся, например, вакцина от полиомиелита (оральная) и от туберкулеза (БЦЖ), а также краснухи, кори, свинки и ветрянки.

2 ⏺ Убитый* возбудитель.

В данном случае все тоже самое, что и в первом, только инфекционный агент уже не живой. В составе мертвые (убитые) бактерии или инактивированные вирусы. Это вакцины против коклюша (цельноклеточная), полиомиелита (ИПВ) и др.

* Напомню, что в случае, когда речь идет о вирусах, некорректно говорить о «живом» и мертвом» вирусе, тк с точки зрения науки вирусы не являются чем-то живым. Можно говорить о вирулентных – способных заражать и вызывать полноценное заболевание, и инактивированных – не способных вызвать болезнь, но достаточных для выработки иммунного ответа. Но для удобства мы иногда будем называть их живыми/убитыми, тем более, что это выражение уже прочно вошло в обиход.

3 ⏺ Анатоксины (токсоиды)

Это особым образом обработанные (инактивированные) токсины бактерий, которые уже не являются для организма ядом, но все еще способны вызывать иммунный ответ. На их основе делают прививочный вакцины от столбняка, дифтерии, коклюша (вакцина с бесклеточным коклюшным компонентом).

Интересно, что, например, при естественном заражении столбняком иммунитет к нему не формируется, тк содержание токсина в крови не достаточно для формирования иммунной памяти, а бо́льшая концентрация приводит к летальному исходу. В данном случае инактивированный токсин – единственная возможность получить иммунитет и не бояться данной инфекции.

4 ⏺ Искусственные антигены

Материалом для создания искусственных антигенов становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии.

В данном случае разработчик вакцины выступает инженером той конструкции, которую будут вводить пациенту.

Для создания такой вакцины необходимо пройти несколько этапов разработки

– Вначале выбирают какой-то из белков возбудителя, на который иммунная система хорошо реагирует- В лаборатории создают специально “обученную” клеточную культуру, которая этот белок будет по заданию производить (производят генную модификацию, встраивая в геном клеток-продуцентов последовательность, кодирующую нужный белок)- Обеспечивают эту культуру всем необходимым, чтобы видоизмененная клеточка активно размножалась и производила антигены для вакцины- Спустя какое-то время «собирают урожай», выделяя из раствора искомый белок.

Процесс по его сути можно сравнить с обычным брожением.

В этом случае дрожжи – будут той самой специально обученной культурой клеток, а спирт – то искомое вещество, которое мы хотим от этих клеток получить. Сахар или фрукты, которые мы им предоставляем служат для дрожжей пищей. Только дрожжи от природы умеют делать спирт, а антигены для вакцины от ВГВ нет.

Особенностью таких вакцин является то, что реального возбудителя, что называется, даже рядом не лежало. Мы просто срисовали его кусочек и распечатали много раз на 3D принтере (клонировали).

Так делают современные вакцины против вирусного гепатита В (ВГВ) и вируса папилломы человека (ВПЧ).

Вакцины и собаки

Для наилучшего понимания можно провести еще одну аналогию:

  • волк (дикий) = дикий вирус
  • собака (домашняя) = ослабленный вирус
  • мертвая собака (простите) = инактивированный вирус
  • лапа от плюшевого щенка = искусственный антиген

Итого, все вакцины можно разделить на живые и неживые.

Живые – как говорили выше, содержат ослабленного возбудителя.

Неживые – содержат убитого возбудителя или же его искусственно созданные фрагменты.

В России зарегистрированы следующие варианты:

НЕЖИВЫЕ ВАКЦИНЫ от следующих инфекций

Источник: https://zen.yandex.ru/media/id/5c6047a614574e00b13019af/vidy-vakcin-i-ih-sochetaemost-5cb39189c07b6700b34ea03b

Живой вирус против гриппа. В чем отличие живой гриппозной вакцины от инактивированной и что такое коллективный иммунитет

Неживая вакцина

Погода еще радует нас солнечными и теплыми днями, но зима близко. А с ней и ОРВИ, к которым относится и грипп.

«Чердак» поговорил с заведующей отделом вирусологии Института экспериментальной медицины, экспертом ВОЗ, профессором Ларисой Руденко и разбирался, что такое живая гриппозная вакцина, какие штаммы этого вируса сейчас считаются самыми опасными, что такое коллективный иммунитет и как защитить себя от гриппа.

Каждую осень врачи предупреждают о новых вспышках гриппа, при этом нередко говорят о появлении новых штаммов вируса.

Вирус гриппа славится скоростью, с которой он меняется: новые штаммы появляются довольно быстро из-за того, что генетическую информацию вируса гриппа кодирует РНК, которая легко мутирует, а многие из этих мутаций идут вирусу на пользу, например делая его менее узнаваемым для клеток нашего организма.

Чтобы бороться с постоянно меняющимся врагом, приходится работать на опережение: Всемирная организация здравоохранения через Глобальную систему эпиднадзора за гриппом и ответных мер (ГСЭГОМ) ведет мониторинг за вспышками гриппа в различных регионах планеты. И каждый год, примерно за шесть месяцев до начала сезона заболевания гриппом, ВОЗ дает рекомендации по составу вакцин против него для Северного и Южного полушарий.

«Прогноз Всемирной организации здравоохранения имеет очень большое значение. Но мы даже не ждем рекомендаций. Когда появляются новые штаммы, мы начинаем заранее готовить вакцину. Иногда получается, что приходят рекомендации, а у нас штамм уже готов.

Сейчас в Южном полушарии начинается циркуляция вируса гриппа, активная эпидемическая ситуация в Австралии, Новой Зеландии, Гонконге.

Мы уже в контакте с лабораториями этих стран, чтобы контролировать, что там циркулирует и на что нам ориентироваться», — рассказывает Руденко о подготовке живой вакцины против новых штаммов гриппа.

Ослабленный вирус

Вакцины от многих болезней делятся на два типа: живые и инактивированные. Как следует из названия, живая вакцина — это, по сути, и есть вирус, только ослабленный. Он уже не может вызвать заболевание, но стимулирует естественный иммунный ответ без проявления симптомов, то есть без головной боли, температуры или ломоты, если речь о гриппе.

Живую вакцину от гриппа выращивают на куриных эмбрионах. Она вызывает три типа иммунитета. Местный иммунитет — это система защиты на границе проникновения инфекции в организм, при гриппе — в носоглотке.

Клеточный иммунитет образуют лимфоциты и фагоциты, которые, помимо прочего, уничтожают антигены (то есть вирусы и инфекции) и вырабатывают защитные ферменты в ответ на проникновение патогенов.

Третий тип иммунитета — гуморальный: для борьбы с инфекциями и вирусами в организме начинают вырабатываться специальные белки (иммуноглобулины), которые разносятся кровью.

Россия зарегистрировала живую гриппозную вакцину (ЖГВ) в 1987 году, обогнав все остальные страны. В США ЖГВ была зарегистрирована в 2003 году.

По просьбе ВОЗ Институт экспериментальной медицины заключил договор на трансфер технологии производства живой гриппозной вакцины в новые индустриальные и развивающиеся страны и согласился готовить для них штаммы.

С 2009 года Индия и Китай через ВОЗ получают от института вакцинные штаммы для производства сезонных вакцин. В 2010 году вакцина была зарегистрирована в Индии.

Инактивированную вакцину готовят из выращенного на курином эмбрионе вируса. Затем вирус убивают, и он становится антигеном и вызывает гуморальный иммунитет.

Вакцины отличаются и по способу введения. Живая вакцина вводится во «входные ворота» инфекции, где она размножается. При гриппе это носоглотка, поэтому вакцинация ЖГВ — это распыление в нос. Инактивированную вакцину вводят уколом.

Кроме борьбы с гриппом, есть живые вакцины против оспы, полиомиелита, кори, желтой лихорадки и других инфекционных заболеваний. Так, в 1950-х американский ученый Альберт Сейбин создал вакцину от полиомиелита на основе ослабленного вируса.

В СССР его идею развили вирусологи Михаил Чумаков и Анатолий Смородинцев, которые разработали собственную вакцину.

Вакцинация их препаратом, который передавали в развивающиеся страны, привела к резкому снижению заболеваемости полиомиелитом как в СССР, так и во всем мире.

Рецепт вакцины

Раз вирус гриппа быстро меняется, то и вакцины не должны отставать от него.

«Мы берем этот вакцинный штамм старой разновидности, который уже давно не циркулирует, берем внутренние гены, то есть те гены, которые кодируют внутренние белки, от этого вакцинного штамма, которые ответственны за безвредность, и скрещиваем его с „диким“ вирусом (вирусом, который циркулирует в природе и, попадая в организм человека, вызывает заболевание — прим.

„Чердака“). От „дикого“ вируса мы берем только те гены, которые ответственны за иммуногенность, то есть за иммунный ответ на вакцину. Это поверхностные два гена — гемагглютинин и нейраминидаза.

А все внутренние гены, которые обеспечивают безвредность этой вакцины, — они от старой вакцины, которая показала безвредность на протяжении многих лет применения», — говорит Руденко.

Сотрудник отдела вирусологии Института экспериментальной медицины за работой. Фото предоставлено Л. Руденко

Как правило, на создание живой вакцины против нового штамма гриппа уходит 8−10 недель, а все производство идет в России. Ответственным за изготовление штаммов живой вакцины в России Минздрав назначил отдел вирусологии Института экспериментальной медицины.

В то же время для изготовления инактивированной вакцины компании заказывают вакцинный штамм за рубежом, после чего начинают производство вакцин.

Коллективный иммунитет

Основным различием между вакцинами Руденко называет создание коллективного иммунитета благодаря использованию живой вакцины.

«Живая вакцина создает иммунитет в верхних воротах инфекции. Вирус попадает туда, не размножается и не передается в общество.

А инактивированная создает иммунитет у привитого человека, но в верхних дыхательных путях нет иммунитета, только в крови. В результате вирус попадает туда, размножается.

Он может не вызвать заболевание у этого человека, но может распространяться на других людей, особенно не привитых.

Это очень важное свойство всех живых вакцин — влияние на эпидемический процесс», — говорит Руденко.

По словам собеседницы «Чердака», с 1987 по 1990 год в Нижнем Новгороде под руководством Госсанэпиднадзора СССР проходило совместное с ВОЗ, Институтом вирусологии им. Ивановского, ГИСК им. Л.А. Тарасевича и Центром по контролю и профилактике заболеваний США исследование коллективного иммунитета. Во время исследования медики вакцинировали от гриппа 12 тысяч детей.

«Половина школ прививалась живой вакциной, другая половина школ — инактивированной. В тех школах, где дети были привиты живой вакциной, заболеваемость не привитых детей и заболеваемость персонала была снижена в период эпидемии в три раза.

Это пример того, что у детей после прививки создался иммунитет в верхних дыхательных путях. Даже если вирус туда попадал, он не размножался и не передавался детям, которые не привиты. Это принцип коллективного иммунитета», — сказала Руденко.

Из-за антигенного дрейфа или постепенных мутаций вируса появляются новые штаммы. И в отличие от инактивированной, живая вакцина способна защитить от них.

«Защита от дрейфового варианта строится на том, что живая вакцина стимулирует секреторный иммунитет, то есть „в воротах инфекции“, гуморальный и клеточный иммунитет. И за счет такого широкого спектра иммунного ответа и создается вот эта защита от дрейфовых вариантов», — говорит Руденко.

Сила в разнообразии

Самым надежным средством от гриппа Руденко называет правильную тактику вакцинации. Так, если учащимся, молодежи и военнослужащим, которые относятся к наиболее социально мобильным слоям населения, стоит использовать ЖГВ, то пенсионерам, беременным и людям с хроническими заболеваниями — инактивированные вакцины.

«Надо правильно подойти к тактике вакцинации. Нельзя применять один тип вакцин. Живой вакциной надо прививать людей, которые находятся в тесном контакте и распространяют вирус в обществе.

Другая категория людей — люди с хроническими заболеваниями, иммунодефицитом — им нужно вводить инактивированную вакцину, чтобы защитить их и снизить смертность и осложнения против гриппа», — уверена Руденко.

Сотрудники отдела вирусологии Института экспериментальной медицины. Фото предоставлено Л. Руденко

По словам главы Минздрава Вероники Скворцовой, в 2016 году в России от гриппа были привиты 56 млн человек, или 38% населения страны. Это значительно больше, чем 20 лет назад: в 1996 году, по данным Роспотребнадзора, прививки от гриппа сделали лишь 4,9 млн человек. Но большая часть россиян до сих пор отказывается от вакцинации.

«Отказ от прививок — это вопрос социальной и государственной значимости. Раньше в школы и детские сады не допускали детей, которые не привились по обязательному календарю прививок. И не только потому, что хотели защитить этого ребенка, но и потому что хотели защитить детей, которые находятся в этом коллективе», — подчеркивает Руденко.

Три мутации до пандемии

В 2009 году свиной грипп H1N1 вызвал первую за 41 год пандемию. Кроме того, с 2003 по 2013 год специалисты отмечали вспышки птичьего гриппа (H5N1 и H7N9), жертвами которого стали более 380 человек. По словам Руденко, самыми вероятными источниками новых пандемий могут стать птичьи вирусы гриппа.

«Самые опасные сейчас кандидаты по пандемии — это два птичьих вируса H5N1 и H7N9, от которых высочайшая смертность: до 30% заразившихся H7N9 погибают, а смертность от H5N1 — около 50%.

И конечно, человеческий вирус, А (H2N2), который уже 50 лет не циркулирует в популяции, является очень потенциально опасным, потому что у половины населения земного шара нет против него иммунитета.

В 1957 году он вызвал пандемию, поэтому люди, родившиеся до нее, могли встречаться с этим вирусом и у них сохранилась иммунологическая память. А родившиеся после 1957 года не имеют иммунитета к этому вирусу», — говорит Руденко.

Эксперт отмечает, что у обоих птичьих вирусов сейчас накопилось высокое количество мутаций, которое может привести к высокой патогенности.

«С этой точки зрения очень опасен вирус H7N9, который сейчас активно циркулирует в Китае. У него необходимо изменение только трех мутаций.

Мы знаем, какие мутации отвечают за рецепторную специфичность, то есть за возможность размножения в организме человека. Если будут изменены эти три мутации, то вирус будет высокопатогенным и пандемическим для человека, особенно сейчас.

В связи с этим по рекомендации ВОЗ нами начата подготовка новой живой вакцины на базе этих вирусов», — подчеркивает Руденко.

В марте 2017 года ВОЗ обратилась в отдел вирусологии с просьбой подготовить вакцины против двух штаммов, появившихся в Китае. Ученые выполнили эту работу и в настоящее время проводят доклинические испытания вакцины.

 Алиса Веселкова

Источник: https://tass.ru/sci/6821063

Первые, новые, свои: какую из российских вакцин от COVID-19 выбрать

Неживая вакцина

Три российские вакцины, каждая из которых провоцирует выработку защитных антител своим способом, готовятся к выходу на рынок.

Один из препаратов использует в качестве средства борьбы с патогеном аденовирус, другой состоит из синтетических пептидов и частиц алюминия, а третий содержит целый SARS-CoV-2, лишенный инфекционных свойств.

«Известия» расспросили экспертов, какую вакцину они считают наиболее безопасной и эффективной.

Вакцина Института Гамалеи

Так называемая вакцинная гонка идет по всему миру: ученые разных стран пытаются создать эффективные и безопасные препараты, которые могли бы переломить ход эпидемии. Сегодня в этой гонке лидируют три российские вакцины, основанные на разном типе действия.

Первой зарегистрированной вакциной в мире стал препарат Института имени Гамалеи. Он основан на использовании аденовируса, который лишили способности размножаться, а в геном вставили последовательность, кодирующую S-белок коронавируса.

Это значит, что, попадая в клетки человеческого организма, вирус заставляет их производить коронавирусный S-белок, что и формирует иммунный ответ. Требуется два раза ввести препарат с интервалом в три недели.

Сейчас проходит третья стадия испытаний этой вакцины на 40 тыс. добровольцев.

Справка «Известий»

Аденовирусы — семейство ДНК-содержащих вирусов позвоночных, лишенных липопротеиновой оболочки. Аденовирусы используются в качестве вирусного вектора для генной терапии благодаря их способности реплицироваться в делящихся и неделящихся клетках. Ученые из Китая применяют аденовирусы в лечении онкологических заболеваний.

Среди экспертов, опрошенных «Известиями», энтузиастом такого метода в создании новых вакцин оказался руководитель лаборатории геномной инженерии Павел Волчков.

— Это наиболее прогрессивный подход — собирать вакцины на основе аденовируса правильно, — считает ученый.

— Во-первых, это все еще вирус, который может проникать в клетки, он ведет себя, как вирус, и вызывает иммунный ответ, как вирус.

В результате реагирует и В-клеточный, и Т-клеточный иммунитет, то есть развивается полноценный противовирусный ответ. Другие вакцины, скорее всего, будут вызывать только В-клеточный ответ.

Однако, по словам Павла Волчкова, у всех подходов есть и свои недочеты. В отношении вакцины Института Гамалеи недостатком является то, что многие люди, скорее всего, уже сталкивались с аденовирусами.

Это значит, что у них уже есть определенный уровень адаптивного иммунного ответа. Поэтому требуется большая доза препарата — отсюда появляется температура, которая наблюдается у многих добровольцев.

Тем не менее, по словам эксперта, недостатков у этого варианта вакцины меньше, чем у других. Кроме того, важным фактом является и то, что данный подход позволяет очень быстро создавать препараты.

— В ситуации нынешней пандемии особенно стало ясно, как важно уметь быстро создавать вакцины, — подчеркнул Павел Волчков. — Ученые Института Гамалеи взяли проверенный носитель и уже через месяц получили вакцину от нового заболевания. Мне кажется, это очень значимый аргумент.

Впрочем, безопасность и эффективность вакцины только проверяются, и окончательные выводы можно будет сделать только после завершения третьей фазы испытаний.

— В инструкции к вакцине, которая выложена на сайте Института имени Гамалеи, написано, что у 38 добровольцев была выявлена 141 побочная реакция, — отметил завлабораторией биотехнологии и вирусологии Новосибирского государственного университета, член-корреспондент РАН Сергей Нетесов. — Кроме того, я не совсем понимаю, зачем разработчики задействовали второй компонент — аденовирус 5-го серотипа (Ad-5). Я с ним 20 лет работаю, антитела к нему имеют 70% в популяции. Получается, второй компонент у большинства, может быть, работать не будет.

Вакцина центра «Вектор»

Документы на регистрацию своей вакцины подал иНаучный центр вирусологии и биотехнологии «Вектор». До этого Федеральный институт промышленной собственности выдал «Вектору» три патента на препарат «ЭпиВакКорона».

Эта вакцина содержит фрагменты коронавируса — синтетические пептидные антигены, так называемые короткие белки. По мнению многих опрошенных «Известиями» экспертов, эта субстанция по идее должна быть наиболее безопасной.

— Более всего, конечно, я жду окончания разработки нашей «вакцины МГУ», — сообщила «Известиям» главный разработчик, завкафедрой вирусологии биофака МГУ имени М.В. Ломоносова Ольга Карпова. — Однако, если меня поставят перед выбором из этих трех препаратов, наиболее привлекательной мне кажется вакцина «Вектора».

По мнению Ольги Карповой, этот препарат наиболее безопасен, хоть в его состав в качестве адъюванта (вещество, используемое для усиления иммунного ответа. — Ред.) включен алюминий, от которого «давно пора избавляться».

— Делать пептидные вакцины пытаются давно, — рассказал «Известиям» Сергей Нетесов. — Когда-то хотели создать такие препараты против вируса Денге, малярии, но они не дали нужного иммунитета, хотя по своей конструкции это были бы, возможно, самые безопасные препараты.

Ответ на вопрос, насколько эффективна вакцина «Вектора», дадут испытания третьей фазы. На данный момент эта вакцина остается самой «засекреченной». О том, как именно она делается, в научной печати пока ответов нет.

Вакцина Института Чумакова

На финишную прямую вышла и работа над вакциной Федерального научного центра исследований и разработки иммунобиологических препаратов им. М.П. Чумакова. В ближайшее время на базе медицинских учреждений Кирова, Санкт-Петербурга и Новосибирска будут запущены клинические испытания, в которых примут участие 3000 человек. Скорее всего, завершатся они уже в ноябре.

Подход ученых Центра Чумакова — самый традиционный. Они создали инактивированную — классическую — вакцину от коронавируса. Такой подход применяют в создании большинства препаратов, которые мы знаем, — от гриппа, бешенства, полиомиелита, клещевого энцефалита и так далее.

В этом случае важно инактивировать вирус таким образом, чтобы он сохранил способность проникать в клетки. С точки зрения Сергея Нетесова, это самый бронебойный вариант. Если препарат покажет хорошую эффективность, вероятно, стоит выбирать инактивированную вакцину, считает он.

— Институт Чумакова имеет успешный опыт в создании и производстве инактивированных вакцин против клещевого энцефалита и бешенства, — напомнил эксперт.

— Кроме того, инактивированная вакцина наиболее близка самому вирусу, потому что она из него и сделана. Если испытания покажут, что она защищает, у меня лично этот подход сомнений не вызывает.

Но все покажет третья фаза, так что окончательно судить о вакцинах будем по итогам испытаний.

Впрочем, по мнению других экспертов, в этом случае стоит ожидать так называемого эффекта антителозависимого усиления инфекции, когда, вместо того чтобы блокировать вирус, антитела облегчают его размножение и вход в клетки. Поэтому так важно испытание вакцины на большом количестве человек.

Теория vs. практика

В теории хороши все описанные подходы, но едва ли не главным моментом остается практика, считают ученые. Именно поэтому на первый план выходят результаты клинических испытаний, по которым можно будет сориентироваться и сделать выводы, какую из вакцин выбрать.

— Я лично выберу ту, производители которой опубликуют наиболее подробные результаты своих испытаний, — подчеркнул в беседе с «Известиями» профессор кафедры геномики и биоинформатики СФУ, профессор Геттингенского университета (Германия) Константин Крутовский. — Не надо забывать, что в мире разрабатывается более сотни вакцин. И, если российские препараты хотят с ними конкурировать, необходимо предоставить общественности результаты тестов.

Подобрать нужный для индивидуального использования препарат можно будет, только оценив и сравнив подробные описания третьей фазы испытаний разных вакцин, отметил профессор.

Источник: https://iz.ru/1069281/anna-urmantceva/pervye-novye-svoi-kakuiu-iz-rossiiskikh-vaktcin-ot-covid-19-vybrat

ЭнцеВир Нео детский (Вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная сорбированная) – инструкция по применению

Неживая вакцина
Аналоги, статьи

ИНСТРУКЦИЯ
по медицинскому применению лекарственного препарата

ЭнцеВир® Нео детский

Международное непатентованное наименование

Вакцина для профилактики клещевого энцефалита

Лекарственная форма

суспензия для внутримышечного введения

Состав

Одна доза препарата (0,25 мл) содержит:

активное вещество: инактивированный антиген вируса клещевого энцефалита (КЭ) – от 0,3 до 1,5 мкг;

вспомогательные вещества: алюминия гидроксид (адъювант) 0,15-0,25 мг; сахароза (стабилизатор) 10-15 мг; альбумин человека (стабилизатор) 0,10-0,125 мг; соли буферной системы: натрия хлорид 1,97 мг, натрия гидрофосфат додекагидрат 3,56 мг, натрия дигидрофосфат дигидрат 0,21 мг.

Вакцина не содержит антибиотиков и консервантов.

Примечания

* Антитела к ВИЧ-1, ВИЧ-2, к вирусу гепатита С и поверхностный антиген вируса гепатита В отсутствуют. Производитель гарантирует вирусную безопасность.

**Соли буферной системы в готовом препарате не определяют.

Описание

Гомогенная суспензия белого цвета без посторонних включений.

Фармакодинамика:

Вакцина ЭнцеВир® Нео детский представляет собой стерильную очищенную концентрированную суспензию инактивированного формалином вируса клещевого энцефалита (штамм “205”) полученного путем репродукции его во взвешенной культуре клеток куриных эмбрионов сорбированного на алюминия гидроксиде.

Введение вакцины стимулирует выработку специфических антител к вирусу клещевого энцефалита (КЭ). Обеспечивает защиту от штаммов Европейского и Дальневосточного генотипов вируса КЭ.

Специфическая профилактика клещевого энцефалита у детей с 3 до 17 лет (включительно).

Профилактической вакцинации подлежат:

– лица проживающие на эндемичных по клещевому энцефалиту территориях;

– лица посещающие эндемичные по клещевому энцефалиту территории с целью отдыха туризма работы на дачных и садовых участках.

Противопоказания:

– Осложнения или сильная реакция на предыдущую дозу вакцины – повышение температуры выше 40 °С отек гиперемия более 8 см в диаметре в месте введения;

– острые заболевания и обострение хронических заболеваний. Вакцинацию проводят не ранее чем через 1 мес после выздоровления (ремиссии);

– тяжелые аллергические реакции в анамнезе на пищу и лекарственные вещества;

– аллергические реакции на компоненты вакцины;

– бронхиальная астма;

– системные заболевания соединительной ткани;

– соматические заболевания в стадии суб- и декомпенсации;

– эпилепсия с частыми припадками;

– диабет тиреотоксикоз и другие заболевания эндокринной системы;

– злокачественные новообразования болезни крови;

– отягощенный неврологический анамнез;

– детский возраст до 3 лет.

Возможность вакцинации лиц страдающих заболеваниями не указанными в перечне противопоказаний определяет лечащий врач исходя из состояния здоровья вакцинируемого и риска заражения клещевым энцефалитом.

С осторожностью:

Повышенная чувствительность к белку куриного эмбриона в анамнезе не является абсолютным противопоказанием исключая анафилаксию. Однако таких лиц следует вакцинировать с осторожностью.

Вакцина применяется с осторожностью у лиц с церебральными расстройствами в анамнезе.

Беременность и лактация:

Применение вакцины при беременности противопоказано.

Вакцинация женщин в период грудного вскармливания проводится по решению врача с учетом риска заражения КЭ.

Способ применения и дозы:

Вакцину вводят в дельтовидную мышцу руки (предпочтительно левой) в дозе 025 мл.

Детям младшего возраста возможно введение вакцины в верхненаружную поверхность средней части бедра. Перед вскрытием ампулы необходимо произвести ее визуальный осмотр.

Непосредственно перед инъекцией вакцину в ампуле согревают до комнатной температуры и встряхивают до получения гомогенной суспензии. Шейку ампулы обрабатывают спиртом. Для каждого прививаемого должен быть использован отдельный одноразовый шприц. Препарат вводят сразу после вскрытия ампулы.

Процедура вакцинации должна проводиться при строгом соблюдении правил асептики и антисептики.

Проведенную прививку регистрируют в установленных учетных формах с указанием наименования препарата даты вакцинации дозы номера серии срока годности предприятия-производителя вакцины реакции прививаемого на вакцинацию.

Схемы вакцинации

Плановая вакцинация

Курс вакцинации состоит из двух инъекций по 1 дозе (025 мл) с интервалом 1-7 месяцев (предпочтительно 2 мес).

Первую и вторую инъекцию предпочтительно осуществлять в период с осени по весну. При необходимости вакцинация может быть проведена в любое время года в том числе и в летний период (эпидсезон). Посещение природного очага КЭ допускается не ранее чем через 2 недели после второй прививки.

Экстренная вакцинация

При необходимости экстренной профилактики (в первую очередь при необходимости вакцинации в летнее время) интервал между первой и второй прививками может быть сокращен до 2 недель. Посещение природного очага КЭ рекомендовано не ранее чем через 2 недели после второй прививки.

Ревакцинация

Первую ревакцинацию при обеих схемах проводят однократно через 12 мес после завершения курса первичной вакцинации последующие отдаленные ревакцинации проводят однократно каждые 3 года.

Общая схема вакцинации представлена в таблице:

ВидвакцинацииПервичная вакцинацияРевакцинацияОтдаленныеревакцинации
ПерваяВторая
Плановая0 день вакцинациичерез 1 -7 мес после первой вакцинации (предпочтительно через 2 мес)через 12 мес после завершения курса вакцинациикаждые 3 года
Экстреннаячерез 2 недели после первой вакцинации
Доза025 мл025 мл025 мл025 мл

Побочные эффекты:

По данным полученным в ходе проведения клинических исследований после введения вакцины возможно развитие местных и общих реакций которые возникали преимущественно на первое введение вакцины и проходили самостоятельно без назначения специфической терапии в период от нескольких часов до нескольких суток (2-4 сут).

Местные реакции выражаются в покраснении припухлости болезненности в месте введения.

Общие реакции развиваются в форме недомогания сонливости повышенной утомляемости головной боли головокружения тошноты болей в животе миалгии повышения температуры тела до 385 °С .

Возможно развитие аллергических реакций.

При плохой переносимости пациентом повышенной температуры (до 385 °С) проводится симптоматическая терапия.

На основании данных полученных в результате клинического исследования вакцины была получена следующая информация по частоте встречающихся побочных реакций:

Очень часто (≥1/10) – болезненность в месте введения.

Часто (1/10 – 1/100) – гиперемия в месте введения припухлость в месте введения повышение температуры до 385 °С (особенно на первую вакцинацию) проходящее в течение 1-4 сут головная боль слабость недомогание утомляемость сонливость боли в животе миалгия.

Иногда (1/100 – 1/1000) – тошнота головокружение.

Редко (1/1000 – 1/10000) – аллергические реакции немедленного и замедленного типов.

Очень редко (

Источник: https://medi.ru/instrukciya/entsevir-neo-detskiy-vaktsina-kleshchevogo-entsefalita-kulturalnaya-ochishchennaya-kontsentrirovannaya-inaktivirovannaya-sorbirovannaya_25019/

Каков состав вакцин и можно ли делать несколько прививок в один день?

Неживая вакцина

Существуют различные классификации препаратов для активной иммунизации:

Живые с искусственно ослабленным возбудителем

Иммунная система видит возбудитель почти также, как настоящий вирус или бактерию.

Разница в том, что вызвать заболевание он не может, ведь производители его «ослабили» до степени, когда он перестал быть патогенным.

К такому типу «живых» вакцин относятся препараты против следующих инфекций: полиомиелит (оральная вакцина), туберкулез (вакцина БЦЖ), краснухи, кори, свинки, ветрянки, бруцеллеза, лихорадки Ку и т.п.

Убитые (инактивированные)

Этот случай отличается от первого лишь тем, что инфекционный агент уже не живой, содержит убитые целые микроорганизмы (бактерии и вирусы) или их части.

Прим.: В случае, когда речь идет о вирусах, некорректно говорить о «живом» или «мертвом» вирусе, ведь, с точки зрения науки, вирусы не являются чем-то живым. Правильнее говорить о вирулентных, т.е.

способных заражать и вызывать полноценное заболевание, и инактивированных – не способных вызвать болезнь, но достаточных для выработки иммунного ответа.

Для удобства мы будем называть их живыми/убитыми, тем более, что это выражение уже прочно вошло в обиход.

Примеры инактивированных вакцин: против коклюша (цельноклеточная), против полиомиелита (ИПВ) и др.

Анатоксины

Эти препараты содержат обезвреженные (инактивированные) токсины бактерий, обладающие иммуногенностью и лишенные токсигенности. Для организма они уже не являются ядом, но всё ещё способны вызывать иммунный ответ.
На основе анатоксинов делают вакцины, например, от дифтерии, столбняка, коклюша (вакцина с бесклеточным коклюшным компонентом).

Прим.: Интересен факт, что при естественном заражении столбняком, иммунитет к нему не формируется. Потому как содержание токсина в крови не достаточно для формирования иммунной памяти, а бо́льшая концентрация приводит к летальному исходу. В данном случае инактивированный токсин – это единственная возможность получить иммунитет и не бояться данной инфекции.

Искусственные антигены

Материалом для создания искусственных антигенов служат рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии. В данном случае разработчик вакцины выступает инженером той конструкции, которую будут вводить пациенту.

Для создания такой вакцины необходимо пройти несколько этапов разработки: – вначале выбирают какой-то из белков возбудителя, на который иммунная система хорошо реагирует; – в лаборатории создают специально «обученную» клеточную культуру, которая этот белок будет по заданию производить (производят генную модификацию, встраивая в геном клеток-продуцентов последовательность, кодирующую нужный белок); – обеспечивают эту культуру всем необходимым, чтобы видоизмененная клетка активно размножалась и производила антигены для вакцины;

– спустя какое-то время «собирают урожай», выделяя из раствора искомый белок.

https://www.youtube.com/watch?v=sZ9fr7T_8ck

Можно провести аналогию с процессом обычного брожения. То есть, «дрожжи» будут выступать в роли той самой специально обученной культурой клеток, а «спирт» – в роли искомого вещества, которое мы хотим получить от этих клеток. Фрукты или сахар являются пищей для дрожжей. Разница в том, что дрожжи «умеют» производить спирт, а антигены, например, для вакцины от вирусного гепатита В – нет.

Особенность вакцин с искусственными антигенами в том, что настоящего возбудителя инфекции в них нет совсем. Условно говоря, производители просто «срисовали» часть вируса и распечатали его множество раз на 3D-принтере, т.е. клонировали.

Примеры таких вакцин: против вируса гепатита В, против вируса папилломы человека (ВПЧ).

Сравним вакцины с собаками?

Для ещё большей наглядности предлагаем вам еще одну занимательную аналогию.

Дикий вирус – это волк:

Ослабленный вирус – это домашняя собака:

Инактивированный вирус – это мертвый волк:

Искусственный антиген – это лапа от плюшевой игрушки собачки:

Все вакцины можно разделить на 2 больших блока: живые и инактивированные (неживые).

Живые включают в себя живые, но ослабленные микроорганизмы (бактерии и вирусы). Неживые содержат убитые целые микроорганизмы или их искусственно созданные части.

В России зарегистрированы следующие варианты:

НЕЖИВЫЕ ВАКЦИНЫ от следующих инфекций:

  • Вирусный Гепатит В (Регевак, Вакцина рекомбинантная дрожжевая, Комбиотех)
  • Вирусный Гепатит А (Хаврикс, Аваксим, Альгавак)
  • Полиомиелит ИПВ (Полимилекс, Полиорикс, Имовакс Полио, в составе комплексных вакцин)
  • Грипп (инфлювак, ваксигрип, ультрикс, грипполы, совигрипп).
  • Клещевой энцефалит (Энцевир, ФСМЕ-иммун, Клещ-Э-Вак, Энцепур)
  • Вирус Папилломы Человека (Гардасил, Церварикс)
  • Коклюш, дифтерия, столбняк (в составе комплексных вакцин: АКДС, Бубо-Кокк, Бубо-М, Пентаксим, Тетраксим, Инфанриксы, Адасель)
  • Гемофильная инфекция тип b (Акт-хиб, Хиберикс, в составе комплексных вакцин)
  • Пневмококк (Превенар 13, Синфлорикс, Пневмо 23, Пневмовакс 23)
  • Менингококк (Менактра, Менвео, Менцевакс и другие)

и ЖИВЫЕ ВАКЦИНЫ:

  • Вакцина от туберкулеза (БЦЖ, БЦЖ-М)
  • Коревая вакцина (моновакцина без фирменного наименования)
  • Краснушная вакцина (моновакцина без фирменного наименования)
  • Паротитная вакцина (моновакцина без фирменного наименования)
  • Корь+Паротит (дивакцина без фирменного наименования)
  • Вакцина от кори, краснухи, паротита (Приорикс, MMR-II)
  • Оральная Полиомиелитная Вакцина (Бивак полио)
  • Вакцина оральная от Ротавируса (Ротатек)
  • Вакцина от Ветряной оспа (Варилрикс)

Сочетаемость вакцин

Можно ли проводить вакцинацию препаратами из этих двух списков в один день? Да, можно, причем в любых сочетаниях!

Мнение CDC (Федеральное агентство министерства здравоохранения США):

«Although there is no exact limit on the number of injections, with a little flexibility, a provider can ensure that the primary series doses are given without administering too many injections at each visit.»

Перевод: «Не существует определенного лимита на число одновременно вводимых доз, однако следует подходить к вопросу гибко и не вводить слишком много доз за один раз.»

В России строгое ограничение есть только для БЦЖ, ее делают отдельно, но не из-за того, что она как-то взаимодействует с другими вакцинами, а потому, что есть риск, что по невнимательности медсестра введет ее не внутрикожно, как положено, а подкожно или внутримышечно, перепутав шприц с БЦЖ с другой вакциной. Это приведет к холодному абсцессу (осложнению). И этот риск минимизируют тем, что БЦЖ всегда делают отдельно от других вакцин (по крайней мере в России).

Также, по разным причинам, в инструкции к некоторым вакцинам могут быть указаны иные рекомендации. Например, в инструкции к вакцине «Клещ-Э-Вак» написано, что она разрешена к введению с другими инактивированными вакцинами:

«Допускается проводить вакцинацию против клещевого энцефалита одновременно (в один день) с другими инактивированными вакцинами Национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям (за исключением антирабических).»

В то время как аналогичная по составу вакцина «Энцепур» разрешается к введению с любыми вакцинами:

«Вакцину Энцепур можно вводить одновременно со всеми препаратами из национального календаря профилактических прививок в один день, в разные участки тела. Применение вакцины Энцепур совместно с другими прививками не влияет на их иммуногенность (способность выработки иммунитета).

Переносимость вакцин не ухудшается, количество побочных реакций не возрастает».

Почти всегда такой запрет связан с тем, что просто не были проведены исследования совместного применения вакцин в той конкретной стране, где в инструкции есть такое указание.

Плохая новость в том, что если медик, который проводит вакцинацию, внимательно читает инструкцию, то для него это основание вам отказать в одномоментном введении вакцин. Если вы планируете сделать прививки от нескольких инфекций в один день, лучше заранее изучите инструкции на предмет такой неприятности.

«Менактра» и «Превенар»

У людей с ВИЧ и аспленией CDC и IAC не рекомендуют делать в один день Менактру и Превенар13, так как это приводит к снижению иммунного ответа на некоторые антигены пневмококковой вакцины.

Для здоровых людей единого мнения на этот счёт нет, но по возможности желательно разносить эти вакцины на разные приемы.

ИНТЕРВАЛЫ МЕЖДУ ПРИВИВКАМИ, с точки зрения здравого смысла, если НЕ СДЕЛАЛИ В ОДИН ДЕНЬ, то: Обе вакцины НЕживые = любой интервал Одна вакцина живая, вторая нет = любой интервал

Обе вакцины живые = Ждать месяц

Исключение:
Если прививаемому показана и 13-валентная и 23-валентная вакцины от пневмококковой инфекции, то они не должны вводиться одновременно, и 13-валентная вакцина должна вводиться первой.

In patients recommended to receive both PCV13 and PPSV23, the 2 vaccines should not be administered simultaneously. PCV13 should be administered first.

Если 23-валентная вакцина была введена первой, то 13-валентная не должна вводиться ранее, чем через 8 недель у лиц в возрасте 6-18 лет, и не ранее, чем через год у лиц 19 лет и старше .

If PPSV23 has been administered first, PCV13 should be administered no earlier than 8 weeks later in children 6-18 years, and one year later in adults 19 years and older.

Однако, с учетом действующего законодательства в России, месяц придется ждать между любыми вакцинами, если они не были сделаны в один день.

ООО «АСКО-МЕД-ПЛЮС» благодарит Антонину Обласову за предоставление материалов.

Источник: https://asko-med.ru/blog/vaktsiny/kakov-sostav-vaktsin-i-mozhno-li-delat-neskolko-privivok-v-odin-den/

О вашем здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: