Нуклеотиду г комплементарен нуклеотид

Содержание
  1. Задачи по цитологии на ЕГЭ по биологии
  2. Типы задач по цитологии
  3. Решение задач первого типа
  4. Решение задач второго типа
  5. Решение задач третьего типа
  6. Решение задач четвертого типа
  7. Решение задач пятого типа
  8. Решение задач шестого типа
  9. Решение задач седьмого типа
  10. Примеры задач для самостоятельного решения
  11. Приложение I Генетический код (и-РНК)
  12. Принцип комплементарности – основа, суть и роль правила в биологии
  13. Свойства и катаболизм
  14. Закон взаимодополнения
  15. Функции и возобновление
  16. Значение принципа
  17. Перспективы комплементарности
  18. Транскрипция и трансляция
  19. Репликация ДНК – удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio – удвоение)
  20. Транскрпиция (лат. transcriptio — переписывание)
  21. Трансляция (от лат. translatio — перенос, перемещение)
  22. Примеры решения задачи №1
  23. Пример решения задачи №2
  24. Пример решения задачи №3
  25. Днк (дезоксирибонуклеиновая кислота)
  26. Строение ДНК
  27. Строение нуклеотидов в молекуле ДНК
  28. Уровни структуры ДНК
  29.  Правило Чаргаффа
  30. Модель ДНК Уотсона-Крика
  31. Интересные факты о ДНК

Задачи по цитологии на ЕГЭ по биологии

Нуклеотиду г комплементарен нуклеотид

Автор статьи – Д. А. Соловков, кандидат биологических наук

Типы задач по цитологии

Задачи по цитологии, которые встречаются в ЕГЭ, можно разбить на семь основных типов. Первый тип связан с определением процентного содержания нуклеотидов в ДНК и чаще всего встречается в части А экзамена.

Ко второму относятся расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК. Этот тип задач может встретиться как в части А, так в части С.

Задачи по цитологии типов 3, 4 и 5 посвящены работе с таблицей генетического кода, а также требуют от абитуриента знаний по процессам транскрипции и трансляции. Такие задачи составляют большинство вопросов С5 в ЕГЭ.

Задачи типов 6 и 7 появились в ЕГЭ относительно недавно, и они также могут встретиться абитуриенту в части С. Шестой тип основан на знаниях об изменениях генетического набора клетки во время митоза и мейоза, а седьмой тип проверяет у учащегося усвоения материала по диссимиляции в клетке эукариот.

Ниже предложены решения задач всех типов и приведены примеры для самостоятельной работы. В приложении дана таблица генетического кода, используемая при решении.

Решение задач первого типа

Основная информация:

  • В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).
  • В 1953 г Дж.Уотсон и Ф.Крик открыли, что молекула ДНК представляет собой двойную спираль.
  • Цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин в другой и наоборот (А-Т и Т-А); напротив цитозина — гуанин (Ц-Г и Г-Ц).
  • В ДНК количество аденина и гуанина равно числу цитозина и тимина, а также А=Т и Ц=Г (правило Чаргаффа).

Задача: в молекуле ДНК содержится  аденина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

Решение: количество аденина равно количеству тимина, следовательно, тимина в этой молекуле содержится . На гуанин и цитозин приходится . Т.к. их количества равны, то Ц=Г=.

Решение задач второго типа

Основная информация:

  • Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.
  • Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.
  • Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Задача: в трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Решение: если в синтезе участвовало  т-РНК, то они перенесли  аминокислот. Поскольку одна аминокислота кодируется одним триплетом, то в гене будет  триплетов или  нуклеотидов.

Решение задач третьего типа

Основная информация:

  • Транскрипция — это процесс синтеза и-РНК по матрице ДНК.
  • Транскрипция осуществляется по правилу комплементарности.
  • В состав РНК вместо тимина входит урацил

Задача: фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.

Решение: по правилу комплементарности определяем фрагмент и-РНК и разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААУ. По таблице генетического кода определяем последовательность аминокислот: фен-арг-цис-асн.

Решение задач четвертого типа

Основная информация:

  • Антикодон — это последовательность из трех нуклеотидов в т-РНК, комплементарных нуклеотидам кодона и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.
  • Молекула и-РНК синтезируется на ДНК по правилу комплементарности.
  • В состав ДНК вместо урацила входит тимин.

Задача: фрагмент и-РНК имеет следующее строение: ГАУГАГУАЦУУЦААА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК.

Решение: разбиваем и-РНК на триплеты ГАУ-ГАГ-УАЦ-УУЦ-ААА и определяем последовательность аминокислот, используя таблицу генетического кода: асп-глу-тир-фен-лиз.

В данном фрагменте содержится  триплетов, поэтому в синтезе будет участвовать  т-РНК. Их антикодоны определяем по правилу комплементарности: ЦУА, ЦУЦ, АУГ, ААГ, УУУ.

Также по правилу комплементарности определяем фрагмент ДНК (по и-РНК!!!): ЦТАЦТЦАТГААГТТТ.

Решение задач пятого типа

Основная информация:

  • Молекула т-РНК синтезируется на ДНК по правилу комплементарности.
  • Не забудьте, что в состав РНК вместо тимина входит урацил.
  • Антикодон — это последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.

Задача: фрагмент ДНК имеет следующую последовательность нуклеотидов ТТАГЦЦГАТЦЦГ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

Решение: определяем состав молекулы т-РНК: ААУЦГГЦУАГГЦ и находим третий триплет — это ЦУА. Это антикодону комплементарен триплет и-РНК — ГАУ. Он кодирует аминокислоту асп, которую и переносит данная т-РНК.

Решение задач шестого типа

Основная информация:

  • Два основных способа деления клеток — митоз и мейоз.
  • Изменение генетического набора в клетке во время митоза и мейоза.

Задача: в клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

Решение: По условию, . Генетический набор:

  • перед митозом , поэтому в этой клетке содержится  молекул ДНК;
  • после митоза , поэтому в этой клетке содержится  молекулы ДНК;
  • после первого деления мейоза , поэтому в этой клетке содержится  молекул ДНК;
  • после второго деления мейоза , поэтому в этой клетке содержится  молекул ДНК.

Решение задач седьмого типа

Основная информация:

  • Что такое обмен веществ, диссимиляция и ассимиляция.
  • Диссимиляция у аэробных и анаэробных организмов, ее особенности.
  • Сколько этапов в диссимиляции, где они проходят, какие химические реакции проходят во время каждого этапа.

Задача: в диссимиляцию вступило  молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

Решение: запишем уравнение гликолиза: = 2ПВК + 4Н + 2АТФ. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и 2АТФ, следовательно, синтезируется 20 АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.

Примеры задач для самостоятельного решения

  1. В молекуле ДНК содержится  аденина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.
  2. В трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
  3. Фрагмент ДНК состоит из  нуклеотидов.

    Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

  4. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  5. Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).
  6. Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ.

    Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

  7. В клетке животного диплоидный набор хромосом равен .

    Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  8. В диссимиляцию вступило  молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.
  9. В цикл Кребса вступило  молекул ПВК.

    Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

Ответы:

  1. Т=, Г=Ц= по .
  2.  аминокислот,  триплетов,  нуклеотидов.
  3.  триплета,  аминокислоты,  молекулы т-РНК.
  4. и-РНК: ЦЦГ-АГА-УЦГ-ААГ. Аминокислотная последовательность: про-арг-сер-лиз.
  5. Фрагмент ДНК: ЦГАТТАЦААГАААТГ. Антикодоны т-РНК: ЦГА, УУА, ЦАА, ГАА, АУГ. Аминокислотная последовательность: ала-асн-вал-лей-тир.
  6. т-РНК: УЦГ-ГЦУ-ГАА-ЦГГ. Антикодон ГАА, кодон и-РНК — ЦУУ, переносимая аминокислота — лей.
  7. . Генетический набор:
    1. перед митозом  молекул ДНК;
    2. после митоза  молекулы ДНК;
    3. после первого деления мейоза  молекул ДНК;
    4. после второго деления мейоза  молекул ДНК.
  8. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и 2АТФ, следовательно, синтезируется  АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.
  9. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекулы глюкозы. Количество АТФ после гликолиза — молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции молекул АТФ.

Итак, в этой статье приведены основные типы задач по цитологии, которые могут встретиться абитуриенту в ЕГЭ по биологии. Надеемся, что варианты задач и их решение будет полезно всем при подготовке к экзамену. Удачи!

Смотри также: Подборка заданий по цитологии на ЕГЭ по биологии с решениями и ответами.

Приложение I Генетический код (и-РНК)

Первое основаниеВторое основаниеТретье основание
УЦАГ
УФенСерТирЦисУ
ФенСерТирЦисЦ
ЛейСер— А
ЛейСерТриГ
ЦЛейПроГисАргУ
ЛейПроГисАргЦ
ЛейПроГлнАргА
ЛейПроГлнАргГ
АИлеТреАснСерУ
ИлеТреАснСерЦ
ИлеТреЛизАргА
МетТреЛизАргГ
ГВалАлаАспГлиУ
ВалАлаАспГлиЦ
ВалАлаГлуГлиА
ВалАлаГлуГлиГ

Источник: https://ege-study.ru/ru/ege/materialy/biologiya/zadachi-po-citologii-na-ege-po-biologii/

Принцип комплементарности – основа, суть и роль правила в биологии

Нуклеотиду г комплементарен нуклеотид

Воспроизведение молекулы ДНК основано на следующем — цепочку можно использовать в качестве матрицы для сборки новой молекулы. В результате деления происходит самопроизведение либо репликация. Сущность процесса заключается в получении каждой дочерней клеткой копии материнского ДНК. роль соединения — передача наследственной информации.

Сама молекула состоит из следующих форм РНК:

  • информационные либо матричные;
  • транспортные;
  • рибосомные.

Они, в отличие от ДНК, обладают следующими признаками: нет азотистого основания тимина, вместо него используется урацил. Отсутствует сахар, но есть рибоза. Определение структуры односпиральных белков зависит от набора и порядка расположения аминокислот в пептидных цепочках. Подобная информация зашифрована при помощи генетического кода (ГК).

Он представлен в виде единой системы записи наследственной информации. Подобная последовательность нуклеотидов в ДНК определяет цепочку аминокислот в белке. Структурная единица ГК представлена в виде кодирующего тринуклеотида. Пара кодов должна соответствовать последовательности аминокислот белка.

Так как существует 4 разных нуклеотида, суммарное количество кодов равняется 64. Информация о некоторых аминокислотах может удерживаться только в 61 аминокислоте. Остальные 3 стоп-кода указывают на остановку трансляции полипептидной цепи.

Свойства и катаболизм

В старших классах на биологии изучаются свойства ГК. Один код может образовать только одну аминокислоту. Чтобы записать мРНК, «запятые» не используются. При шифровке должно соблюдаться следующее условие — одна аминокислота кодируется различными кодами. Примеры других свойств молекул:

  • Кроме вирусов, у каждого нуклеотида один кодон.
  • ГК одинаков для всех организмов.
  • Триплеты в ДНК идут в последовательности, аналогичной для аминокислот в белке.

Чтобы разобраться, в чем заключается принцип комплементарности, необходимо рассмотреть некоторые процессы: всасывание и переваривание нуклеиновых кислот (НК), катаболизм (энергетический обмен).

Учёные доказали, что организм способен переварить до 1 гр НК в сутки. Процесс переваривания осуществляется в тонком кишечнике.

Предварительно НК под воздействием ферментов превращаются в мононуклеотиды.

В тонком кишечнике от веществ отщепляется фосфорная кислота. Образуются нуклеозиды. Некоторая часть распадается на углеводы и азотистые основания. Удерживать НК — задача печени.

Процесс энергетического обмена, диссимиляции либо катаболизма заключается в распаде сложных компонентов на более простые. Наблюдается окисление любого вещества.

Явление сопровождается освобождением энергии в виде молекулы АТФ с теплом.

В клетках обмен РНК протекает интенсивнее, чем обмен ДНК. На последнем этапе процесса НК расщепляются на следующие компоненты:

  • углеводы;
  • азотистые основания (АС);
  • фосфорная кислота.

Пуриновые АС при катаболизме теряют аминогруппу, окисляясь, превращаясь в мочевую кислоту. Пиримидиновые АС подвергаются глубокому расщеплению до воды, углекислого газа и аммиака. Углеводы переходят в глюкозу. Фосфорная кислота не подвергается распаду. Она принимает участие в реакциях фосфорилирования и фосфолиза либо при избытке выделяется из организма с уриной.

Закон взаимодополнения

Термином «комплементарность» в биологии обозначают взаимное соответствие молекул биополимеров, которые обеспечивают связь между комплементарными (пространственно взаимодополняющими) частями молекул вследствие любых супрамолекулярных взаимодействий (водородных, гидрофобных).

Правило комплементарности ДНК и РНК заключается в следующем — водородная связь и двойная спираль образуются только тогда, когда более крупное основание А в одной цепи имеет в качестве партнёра во второй цепи меньшее по параметрам пиримидиновое основание Т, а Г связан с Ц.

Такой закон можно записать следующим образом:

  1. …-Г-Ц-Г-А-А-Т-Ц-Ц-Т-А-…
  2. …-Ц-Г-Ц-Т-Т- А-Г-Г-А-Т-…

Подобная закономерность часто отображается в виде таблицы. Соответствие А Т и Г Ц — правило комплементарности, а цепи — комплементарными. С учётом закона содержание А в ДНК всегда совпадает с количеством Т, а объём Г равен числу Ц. Две цепи ДНК могут отличаться химически, но они несут одну информацию, так как по правилу Уотсона и Крика следует, что одна цепочка задаёт другую.

Структура РНК считается менее упорядоченной, чем ДНК. Чаще это простая молекула, только некоторые вирусы состоят из двух цепей. Последняя структура считается более гибкой, чем ДНК. Определённые участки в молекуле РНК взаимно комплементарны, а при изгибании они спариваются. Таким способом образуются двухцепочечные структуры. Подобной характеристикой обладают транспортные РНК.

Функции и возобновление

Принцип комплементарности лежит в основе взаимодействия, удвоения либо репликации молекул ДНК. По нему образуется дочерняя цепочка. При последующем делении материнской клетки каждая дочерняя получает по 1 копии молекулы ДНК. Она идентична структуре матери. Процесс обеспечивает тонкую передачу генетической информации между поколениями.

От правильности репликации зависит точность соответствия комплементарных пар оснований. Другие характеристики явления:

  • матричность — однозначное определение последовательности синтезируемой цепочки;
  • полуконсервативность — структура, образованная при репликации, считается вновь синтезированной, а другая — материнской;
  • направленность — идёт от пятого конца новой цепи к третьему;
  • полунепрерывность — постоянный синтез одной молекулы и набор фрагментов второй цепи.

Репликация протекает в несколько этапов. Предварительно расплетаются молекулы с помощью фермента хеликазы. Образуются матрицы, на которых будет осуществляться синтез новых линий. На следующем этапе происходит фиксация новых нуклеотидов по принципу комплементарности. Новые клетки расходятся, скручиваясь в спираль. За одну секунду происходит репликация 750 нуклеотидов.

функция молекулы заключается в хранении и передаче следующему поколению наследственной информации, записанной в ней. За счёт принципа комплементарности репликация создаёт точную копию первичной молекулы. Таким способом образуются новые клетки, идентичные материнским.

Значение принципа

Взаимодополняемость считается важным процессом при формировании белков. Без него невозможен синтез дочерних клеток. Явление играет важную роль в делении молекул, так как каждый новый организм получает по одной одинаковой копии ДНК. За счёт комплементарности обеспечивается передача генетической информации от поколения к поколению.

Изучив принцип, можно понять механизм образования мутаций, способы их предупреждения. Из закона вытекает следующее следствие: репликация дезоксирибонуклеиновой кислоты — важное событие в делении клеток и синтезе белка. На основе принципа комплементарности работает практическая медицина ДНК-технологий.

Закон позволил подробно изучить механизм развития заболеваний, которые передаются наследственным путём, проанализировав их патогенез.

Области генетики и медицины, в которых успешно применяется закон:

  • Создание вакцин для борьбы с разными типами гепатита.
  • Разработка человеческого инсулина.
  • Восстановление нормальной свёртываемости крови у пациентов, страдающих от гемофилии (хроническая кровоточивость).
  • Открытие возможности ввода в человеческий организм полноценных генов, их фрагментов с целью корригирования некоторых нарушений обмена веществ.
  • Проведение терапии разных форм иммунодефицита у детей.
  • Разработка эффективных методов терапии больных муковисцидозом (системное заболевание, связанное с мутацией генов), фенилкетонурией (врождённое нарушение метаболизма), тяжёлыми наследственными патологиями.
  • Исследование генов.

Перспективы комплементарности

За счёт современного развития генетики и медицины взаимодополняемость получает широкое применение в разных исследованиях. Принцип способствовал установлению и внедрению в лечебную практику теории функционирования живого организма, его саморегуляцию, взаимоотношение функциональных систем.

Комплементарность позволяет применять некоторые методики лечения, направленные на устранение внутренних патологических процессов с использованием компенсаторных возможностей.

Процесс изучения нуклеотидов предоставляет шанс внедрять в главные терапевтические методы самые последние достижения генной инженерии.

Подобная возможность позволяет побороть тяжёлые наследственные патологии, обеспечив пациентам полноценную жизнь.

При проведении исследований учёные выявили некоторые интересные факты. В геноме существует более трёх миллиардов нуклеотидов, но только около одного процента участвует в кодировке белков.

Всего у человека найдено свыше 20 000 генов, при этом каждый из них хранится в соответствующей клетке. Около 4/5 генома переписывается на РНК.

В ДНК сосредоточено несколько дополнительных участков, которые контролируют кодировку и синтез белка.

Источник: https://nauka.club/biologiya/printsip-komplementarnosti.html

Транскрипция и трансляция

Нуклеотиду г комплементарен нуклеотид

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез биополимеров (нуклеиновых кислот, белков) на матрице – нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом “генетическом языке”. Скоро вы все поймете – мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится – перерисуйте его себе :)

Возьмем 3 абстрактных нуклеотида ДНК (триплет) – АТЦ. На иРНК этим нуклеотидам будут соответствовать – УАГ (кодон иРНК). тРНК, комплементарная иРНК, будет иметь запись – АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК – удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio – удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) – в Ц (цитозин).

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.

Транскрпиция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит в соответствии с принципом комплементарности азотистых оснований: А – У, Т – А, Г – Ц, Ц – Г (загляните в “генетический словарик” выше).

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК – промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК – терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень – в процесс трансляции. Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность аминокислот.

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК.

Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним – мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц. Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту, соответствующую кодону АУГ – метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) – У (урацил), Г (гуанин) – Ц (цитозин). В основе этого также лежит принцип комплементарности.Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу иРНК одновременно – образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

  • Терминация
  • Синтез белка – полипептидной цепи из аминокислот – в определенный момент завершатся. Сигналом к этому служит попадание в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция – завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй – из верхнего горизонтального, третий – из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота :)

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА – Глн. Попробуйте самостоятельно найти аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота – Ала, ААА – Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк: это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.

“Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода”

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

“Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ.

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК”

Обратите свое пристальное внимание на слова “Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК “. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу синтезировать с ДНК фрагмент тРНК – другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было в предыдущей задаче), поэтому не следует разделять их запятой – мы записываем их линейно через тире.

Третий триплет ДНК – АЦГ соответствует антикодону тРНК – УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК, так что переведем антикодон тРНК – УГЦ в кодон иРНК – АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ – Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК – так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%. 100% – (20%+20%) = 60% – столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? :)

Источник: https://studarium.ru/article/121

Днк (дезоксирибонуклеиновая кислота)

Нуклеотиду г комплементарен нуклеотид

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.

 Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.

Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки,  другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).

    Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),

    Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНКрибозой, имеющей 2 гидроксильные группы(OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК.

Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.

Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):   А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3).

При этом аденин образует пару только с тимином,  а  гуанин — с цитозином.

Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—Стремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.

В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Интересные факты о ДНК

  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК. [2]
  2. Международный день ДНК отмечается 25 апреля.

    Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК. [3]

Список литературы: Молекулярная биотехнология: принципы и применение, Б.

Глик, Дж. Пастернак, 2002 год
Б.Глик,
Дж. Пастернак,
Источник: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год
[2] MPlast.

by – портал: “ДНК 1 клетки человека вмещает 1,5 гигабайта информации – лучший винчестер на планете” – 27 апреля 2016 года
[3] Журнал NATURE: “Molecular Structure of Nucleic Acids” – 25 апреля 1953 года
Дата в источнике: 2002 год

Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/

О вашем здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: