Обмен веществ и энергии терморегуляция

Содержание
  1. Терморегуляция человека: механизмы, процессы, нарушения
  2. Что такое терморегуляция организма человека
  3. Система терморегуляции человека
  4. Механизм теплопродукции
  5. Механизм теплоотдачи
  6. Перспирация
  7. Излучение электромагнитных волн
  8. Кондукция
  9. Конвекция
  10. Центр терморегуляции
  11. Нарушения терморегуляции организма: причины, симптомы и лечение
  12. Иммунитет. Обмен веществ и превращение энергии в организме человека. Витамины
  13. Обмен веществ и превращение энергии в организме человека
  14. Белковый обмен
  15. Углеводный обмен
  16. Липидный обмен
  17. Водно-солевой обмен
  18. Витамины
  19. Терморегуляция – это… Терморегуляция и обмен веществ
  20. Диапазон температур
  21. Ядро и оболочка
  22. Теплообразование и теплоотдача
  23. Закаливание
  24. Терморецепторы
  25. Виды терморегуляции
  26. Физическая терморегуляция
  27. Испарение и излучение
  28. Кондукция и конвекция
  29. Химическая терморегуляция
  30. Управление терморегуляцией
  31. Физиология обмена веществ и энергии
  32. Методы измерения энергетического баланса организма
  33. Основной обмен
  34. Общий обмен энергии
  35. Физиологические основы питания. Режимы питания
  36. Обмен воды и минеральных веществ
  37. Регуляция обмена веществ и энергии

Терморегуляция человека: механизмы, процессы, нарушения

Обмен веществ и энергии терморегуляция

Терморегуляция человека – набор чрезвычайно важных механизмов, поддерживающих стабильность температурного режима организма в разных условиях внешней среды. Но почему человек так нуждается в неизменной температуре тела, и что будет, если она начнет колебаться? Как протекают терморегуляционные процессы и что делать, если природный механизм дает сбой? Обо всем этом — ниже.

Что такое терморегуляция организма человека

Человек, как и большинство млекопитающих — гомойотермное создание. Гомойотермия – это способность организма обеспечивать себе постоянство уровня температуры, в основном с помощью физиолого-биохимических реакций.

Терморегуляция организма человека – это эволюционно сформировавшийся набор механизмов, которые срабатывают за счет гуморальной (посредством жидкой среды) и нервной регуляции, метаболизма (обмена веществ) и энергетического обмена. Различные механизмы имеют различные способы и условия срабатывания, поэтому их активация зависит от времени дня, пола человека, числа прожитых лет и даже положения Земли на орбите.

Терморегуляция в организме человека выполняется рефлекторно. Специальные системы, действие которых направлено на контроль температуры, регулируют интенсивность отдачи или поглощения тепла.

Система терморегуляции человека

Поддержание температурного режима тела на постоянном заданном уровне осуществляется при помощи двух противоположных механизмов терморегуляции организма человека — отдачи и продукции тепла.

Механизм теплопродукции

Механизм теплопродукции, или химическая терморегуляция человека – процесс, способствующий повышению температуры организма. Он имеет место при всех обменах веществ, но, по большей мере, в мышечных волокнах, клетках печени и клетках бурых жировых отложений. Так или иначе, в продуцировании тепла участвуют все тканевые структуры.

В каждой клетке человеческого тела происходят окислительные процессы, расщепляющие органические вещества, в ходе которых какая-то доля выделяемой энергии уходит на нагревание организма, а основное количество – на синтезирование аденозинтрифосфатной кислоты (АТФ).

Это соединение является удобной формой для накопления, транспортировки и эксплуатации энергии.

Так выглядит молекула АТФ

Во время понижения температуры рефлекторным образом понижается и скорость обменных процессов в человеческом теле, и наоборот. Химическая регуляция активизируется в тех случаях, когда физической составляющей теплообмена не хватает для поддержания нормального температурного значения.

Механизм теплопродукции активизируется при поступлении сигналов от холодовых рецепторов.

Это происходит, когда температура окружающей среды становится ниже так называемой «зоны комфорта», которая для легко одетого человека лежит в температурных рамках от 17 до 21 градуса, а для голого человека составляет приблизительно 27-28 градусов.

Стоит отметить, что для каждого индивидуума «зона комфорта» определяется индивидуально, она может меняться в зависимости от состояния здоровья, массы тела, места проживания, времени года и т.п.

Чтобы повысить выработку тепла в организме включаются механизмы термогенеза. Среди них выделяют следующие.

1. Сократительный.

Этот механизм активизируется за счет работы мышц, в ходе которой ускоряется разложение аденозитрифосфата. При его расщеплении выделяется вторичная теплота, эффективно согревающая тело.

Сокращения мышц в таком случае происходят непроизвольно — при поступлении импульсов, исходящих из коры головного мозга. Как результат, в теле человека можно наблюдать значительное (до пяти раз) повышение выработки тепла.

Так кожа реагирует на холод

При незначительном понижении температуры увеличивается терморегуляционный тонус, что наглядно проявляется в появлении на коже «мурашек» и поднятии волосков.

https://www.youtube.com/watch?v=0ZLurZ3ANso

Неконтролируемые мышечные сокращения при сократительном термогенезе называют холодовой дрожью. Повысить температуру организма при помощи сокращений мышц можно и осознанно – проявляя двигательную активность. Физическая нагрузка способствует повышению теплопродукции до 15 раз.

2. Несократительный.

Данный вид термогенеза может повысить теплопродукцию почти втрое. В его основе лежит катаболизм (расщепление) жирных кислот. Этот механизм регулируется при помощи симпатической нервной системы и гормонов, выделяемых щитовидной железой и мозговым веществом надпочечников.

Механизм теплоотдачи

Механизм теплоотдачи, или физическая составляющая терморегуляции – это процесс избавления организма от лишнего тепла. Постоянное значение температуры поддерживается за счет выведения тепла через кожу (путем кондукции и конвекции), радиации и выведения влаги.

Часть теплоотдачи происходит за счет теплопроводности кожи и слоя жировой клетчатки. Процесс регулируется по большей части кровообращением. При этом тепло от кожи человека отдается твердым предметам при прикасании к ним (кондукция) или окружающему воздуху (конвекция). Конвекция составляет значимую часть теплоотдачи — в воздух передается 25-30% человеческого тепла.

Радиация или излучение — это перенос энергии человека в пространство или на окружающие предметы, имеющие более низкую температуру. С излучением уходит до половины человеческого тепла.

И, наконец, испарение влаги с поверхности кожи или из дыхательных органов, на которое приходится 23-29% потери тепла. Чем больше показатель температуры тела превышает норму, тем активнее организм охлаждается при помощи испарения — поверхность тела покрывается потом.

В случае, когда температура окружающей среды значительно превышает внутренний показатель организма, испарение остается единственным действенным механизмом охлаждения, все прочие перестают работать. Если же высокая внешняя температура еще сопровождается повышенной влажностью, которая затрудняет потоотделение (т.е. испарение воды), то человек может перегреться и получить тепловой удар.

Рассмотрим механизмы физической регуляции температуры тела более подробно:

Перспирация

Суть этого вида теплоотдачи состоит в том, что энергия направляется в окружающую среду путем испарения влаги с кожного покрова и слизистых оболочек, устилающих дыхательные пути.

Этот вид теплоотдачи — один из наиважнейших, поскольку, как уже отмечалось, может продолжаться в среде с высокой температурой, при условии, что процент влажности воздуха будет меньше 100. Это объясняется тем, что чем выше влажность воздуха, тем хуже вода будет испаряться.

Важным условием для эффективности перспирации является циркуляция воздуха. Поэтому если человек будет в непроницаемой для воздухообмена одежде, то пот через какое-то время потеряет возможность испаряться, поскольку влажность воздуха под одеждой превысит 100%. Это приведет к перегреву.

В процессе потоотделения энергия человеческого организма тратится на то, чтобы разорвать молекулярные связи жидкости. Теряя молекулярные связи, вода принимает газообразное состояние, а тем временем излишек энергии выходит из организма.

Испарение воды со слизистых оболочек дыхательных путей и испарение через поверхностную ткань — эпителий (даже когда кажется, что кожа сухая) называется неощутимой перспирацией. Активная работа потовых желез, при которой происходит обильное потоотделение и теплоотдача, называется ощутимой перспирацией.

Излучение электромагнитных волн

Данный способ теплоотдачи работает за счет излучения инфракрасных электромагнитных волн. По законам физики, любой объект, температура которого поднимается выше температуры окружающей среды, начинает отдавать тепло посредством излучения.

Инфракрасное излучение человека

Чтобы не допустить чрезмерной утечки тепла таким способом, человечество изобрело одежду. Ткань одежды помогает создать воздушную прослойку, температура которой принимает значение температуры тела. Это уменьшает излучение.

Количество тепла, рассеиваемого объектом, пропорционально площади поверхности излучения. Это означает, что, меняя положение тела, можно регулировать свою теплоотдачу.

Кондукция

Кондукция или теплопроведение происходит при прикосновении человека к любому другому предмету. Но избавление от излишка тепла может произойти только в том случае, если объект, с которым человек вступил в контакт, имеет более низкую температуру.

Важно помнить, что воздух с низким процентом влажности и жир имеют малое значение теплопроводности, поэтому являются теплоизоляторами.

Конвекция

Суть этого способа теплоотдачи заключается в перенесении энергии циркулирующим вокруг тела воздухом, при условии, что его температура будет ниже температуры тела. Прохладный воздух в момент контакта с кожей прогревается и устремляется наверх, замещаясь новой дозой холодного воздуха, находящегося ниже из-за высокой плотности.

Одежда играет важную роль в том, чтобы при конвекции тело не отдало слишком много тепла. Она представляет собой барьер, замедляющий воздушную циркуляцию и, тем самым, конвекцию.

Центр терморегуляции

Центр терморегуляции человека находится в головном мозге, а именно – в гипоталамусе. Гипоталамус – это часть промежуточного мозга, которая включает в себя множество клеток (около 30 ядер). Функции этого образования заключаются в поддержании гомеостаза (т.е. способности организма к саморегуляции) и деятельности нейроэндокринной системы.

Одной из самых важных функций гипоталамуса является обеспечение и контроль действий, направленных на терморегуляцию тела.

При выполнении этой функции в центре терморегуляции у человека происходят такие процессы:

  1. Периферические и центральные терморецепторы передают информацию в передний отдел гипоталамуса.
  2. В зависимости от того, в нагревании или в охлаждении нуждается наш организм, активизируется центр теплопродукции либо центр теплоотдачи.

При передаче импульсов от рецепторов холода начинает функционировать центр теплопродукции. Он находится в задней части гипоталамуса. От ядер по симпатической нервной системе двигаются импульсы, повышающие скорость обменных процессов, сужающие сосуды, активизирующие скелетные мышцы.

Если организм начинает перегреваться, то начинает активно работать центр теплоотдачи. Он находится в ядрах переднего отдела гипоталамуса. Возникающие там импульсы являются антагонистами механизма теплопродукции. Под их влиянием у человека происходит расширение сосудов, повышается потоотделение, — организм охлаждается.

В терморегуляции человека принимают участие также другие отделы центральной неравной системы, а именно кора больших полушарий мозга, лимбическая система и ретикулярная формация.

Основная функция температурного центра в головном мозге – поддержание постоянного температурного режима. Он определяется суммарным значением температуры организма, когда оба механизма (теплопродукция и теплоотдача) активны менее всего.

Органы внутренней секреции также играют немаловажную роль в терморегуляции тела человека. При пониженной температуре щитовидная железа увеличивает продукцию гормонов, которые ускоряют обменные процессы. Надпочечники владеют способностью контролировать теплоотдачу за счет гормонов, регулирующих процессы окисления.

Нарушения терморегуляции организма: причины, симптомы и лечение

Нарушением терморегуляции называют внезапные изменения температуры тела или отклонения от нормы в 36,6 градусов по Цельсию.

Причинами температурных колебаний могут стать как внешние факторы, так и внутренние, например, заболевания.

Специалисты различают следующие нарушения терморегуляции:

  • озноб;
  • озноб при гиперкинезе (непроизвольных мышечных сокращениях);
  • гипотермия (переохлаждение организма). Гипотермии посвящена отдельная статья на нашем сайте;
  • гипертермия (перегрев организма).

Причин нарушений терморегуляции множество, самые распространенные из них приведены ниже:

  • Приобретенный или врожденный дефект гипоталамуса (если проблема в этом, то перепады температуры могут сопровождаться сбоями в работе желудочно-кишечного тракта, органов дыхания, сердечно-сосудистой системы).
  • Перемена климата (как внешний фактор).
  • Злоупотребление алкогольными напитками.
  • Следствие процессов старения.
  • Психические расстройства.
  • Вегетососудистая дистония (на нашем сайте вы можете прочитать о температурных перепадах при ВСД).

В зависимости от причины, перепады температуры могут сопровождаться различными симптомами, частыми из которых являются лихорадка, головная боль, потеря сознания, сбои в работе пищеварительной системы, ускоренное дыхание.

При нарушениях регуляции температуры организмом нужно обратиться к неврологу. Основные принципы лечения данной проблемы заключаются в:

  • приеме препаратов, воздействующих на эмоциональное состояние пациента (если причина в расстройствах психики);
  • приеме препаратов, оказывающих влияние на деятельность центральной нервной системы;
  • приеме лекарств, способствующих усиленной теплоотдаче в сосудах кожи;
  • общей терапии, в которую входит: физическая активность, закаливание, здоровое питание, прием витаминов.

Источник: https://temperaturka.com/termoregulaciya/cheloveka

Иммунитет. Обмен веществ и превращение энергии в организме человека. Витамины

Обмен веществ и энергии терморегуляция

Иммунитет – это способность организма защищаться от проникновения чужеродных антигенов.

Он помогает сохранить биологическую целостность организма. 

В основе учения об иммунитете лежат учения Мечникова И.И. Он был первым ученым, который смог связать способности организма с работой лейкоцитов. Его учение звучит следующим образом:

  • Невосприимчивость организма к действию проникших в него чужеродных и инфекционных высокомолекулярных органических агентов называется иммунитетом и обуславливается клетками крови.

Мечников обнаружил, что лейкоциты осуществляют защиту с помощью фагоцитоза. Они захватывают чужеродные объекты, полностью их поглощают и переваривают. В процессе переваривания эритроциты часто погибают. При разрушении они выделяют антитела – это комплексы, которые способны распознать чужеродного агента и направить силы на их уничтожение.

Антитела попадают в органы, где вырабатываются лейкоциты и передают информацию. Новые лейкоциты способны различить антиген. Начинает вырабатываться большее количество лейкоцитов. Как только их становиться достаточное количество, они уничтожают инфекцию и запоминают ее. Так формируется иммунитет.

Иммунная система обладает определенными признаками:

  • способность отличать чужеродные антигены от родных;
  • формирование памяти после контакта с инфекцией;
  • клональная организация клеток, один клон реагирует на один антиген.

Иммунитет разделяют на врожденный и приобретенный. Каждый из них также подразделяют на активный и пассивный. Приобретенный делят на естественный и искусственный.

Врожденный наследуется ребенком от матери. Это естественный процесс. Новорожденный с первых дней жизни имеет собственную группу крови с наличием антител, а также иммунитет к собачьей чуме и чуме крупного рогатого скота.

Естественный активный иммунитет вырабатывается после перенесения какого-либо заболевания. Он может быть пожизненным или временным. Например, если в детстве ребенок перенес ветряную оспу, корь, коклюш или свинку, то повторно заболеть уже не сможет. 

Естественный пассивный иммунитет – это переход антител от матери к ребенку. Они продолжают защищать ребенка первые 2 года жизни. Постепенно белки разрушаются и выводятся из организма. У человека формируется свой собственный иммунитет.

Искусственный активный иммунитет – его получают путем введения в организм ослабленных антигенов определенных инфекций. Они называются анатоксинами. Человек переносит заболевание в легкой форме, практически незаметной. После чего у него формируются антитела к инфекции. В настоящее время предусмотрен ряд обязательных прививок для людей:

  • корь;
  • коклюш;
  • дифтерия;
  • столбняк;
  • оспа;
  • полиомиелит;
  • туберкулез.

Искусственный пассивный иммунитет – в организм человека вводят сыворотку с содержанием антитоксинов и антител к определенному заболеванию. Сыворотку получают путем введения инфекции животному, оно вырабатывает антитела. Далее кровь животного обрабатывают и получают сыворотку.

Пассивно приобретенный иммунитет – сохраняется на короткий срок, около 1 месяца. Появляется практически сразу после введения лечебной сыворотки. Помогает в борьбе с быстротечными инфекциями. Такая сыворотка содержит уже готовые антитела для борьбы с инфекцией.

Обмен веществ и превращение энергии в организме человека

В организме человека постоянно и непрерывно протекают обменные процессы. Водный, солевой, жировой, углеводный и белковый обмен происходят постоянно. За счет этих процессов организм получает энергию для жизнедеятельности.

Обмен веществ в организме называется метаболизмом. Это обязательная часть жизни и развития человека. Обеспечивает совокупность химических  и ферментативных реакций в организме.

Запасы энергии в ходе активности расходуются. С пищей человек получает новую энергию. Соотношение поступающей энергии в организм и расходованной, называется энергетическим балансом.

Белковый обмен

Процесс направлен на использование белков, поступающих в организм с пищей. Сами белки организму не нужны. Большую пользу приносят аминокислоты. Белки распадаются на аминокислоты, часть всасывается в кровь и разносится по органам и тканям. Другая часть идет на получение энергии и строительство собственных белков.

аминокислот регулирует печень, полученные излишки она расщепляет до аммиака. Он идет на синтез мочевины, которая выводится почками и частично кожей. Остаток аминокислот организм перерабатывает в глюкозу, а затем в гликоген. В клетках белки полностью окисляются до воды, углекислого газа, мочевины и мочевой кислоты.

Углеводный обмен

Процесс описывает использование и преобразование углеводов организмом. Углеводы являются основным источником энергии для организма. В суточном рационе они должны составлять треть всего объема пищи.   При расщеплении 1 грамма глюкозы выделяется 17,6 кДж.

После поступления в организм углеводов, они расщепляются до глюкозы. Часть накапливается в печени и преобразуется в гликоген. Он является основным энергетическим источником для сокращения мышечной ткани.

Другая часть преобразуется в жиры. Основная часть глюкозы полностью расщепляется до воды и углекислого газа. 

Уровень глюкозы в крови регулируется гормональной системой, а именно инсулином. При пониженном его содержании, уровень глюкозы в крови находится в повышенном состоянии, что приводит к развитию сахарного диабета. Инсулин тормозит распад гликогена в печени, тем самым увеличивая его содержание. 

Также в организме есть гормон глюкагон. Он отвечает за расщепление гликогена, преобразует его в глюкозу, после чего уровень повышается.

Липидный обмен

Липидный обмен – это процесс преобразования и использования жиров, поступающих в организм с пищей. При расщеплении 1 г выделяется 38,9 кДж энергии.

Жиры содержат незаменимые жирные кислоты. Они всасываются в лимфу через стенки тонкого кишечника. С током крови они распределяются по организму и клеткам. Они являются строительным материалом для клеточных элементов, участвуют в синтезе и образовании гормонов.

При избыточном употреблении жиров  образуются подкожные накопления в виде сальников. Они могут откладываться на тканях органов и на стенках сосудов. Конечным продуктом распада жиров являются вода и углекислый газ.

Водно-солевой обмен

Организм человека на 70% состоит из воды. 30% из них содержится в крови, лимфе и плазме. Вода выполняет множество полезных функций:

  • транспортную;
  • выделительную;
  • теплорегуляционную;
  • среда для протекания химических процессов;
  • определяет физические свойства клеток.

Суточная потребность в жидкости у человека составляет 2-2,5 л. Водный обмен предполагает равновесие между потребляемой и выводимой жидкостью. Вода поступает в организм, всасывается через стенки кишечника, попадает в кровь и распространяется по органам и тканям. Выводится остаток воды с мочой и потом.

Солевой обмен необходим для совершения химических процессов в организме человека. Ежедневно необходимо поступление солей натрия, калия, кальция, фосфора и железа. Они не только участвуют в обменах, но и являются питанием для некоторых органов.

Витамины

Для организма важно поддерживать нормальный уровень витаминов. Они участвуют в биохимических синтезах и оказывают влияние на здоровье человека. Эти вещества организм не способен самостоятельно синтезировать, они попадают внутрь с продуктами питания.

Впервые витамины обнаружил и описал русский врач Лунин Н.И. Он назвал их низкомолекулярными веществами различного характера и природы. Нормальный уровень и баланс витаминов положительно сказывается на мозговой деятельности, состоянии здоровья и работоспособности человека.

При повышении уровня какого-либо витамина развивается гипервитаминоз, при снижении наоборот гиповитаминоз. Эти состояния являются серьезными, имеют запущенные формы, и требуют лечения. 

Витамины подразделяют на жирорастворимые и водорастворимые. К жирорастворимым относят: К, Е, D, A. Все остальные являются водорастворимыми.

НазваниеЗначениеПризнаки гиповитаминоза и гипервитаминозаПищевые продукты, содержащие витаминСуточная потребность, мг
Водорастворимые витамины
В1 (тиамин)Участвует в обмене белков, жиров и углеводовЗаболевание Бери-Бери, теряется сон, аппетит, нарушается работа нервной системыПечень, яичный желток, черный хлеб2-3
В2 (рибофлавин)Участвует в синтезе ферментовНарушается сон, ухудшается состояние роговицы глаза, сухость кожиРыбные продукты, гречневая крупа, печень2-4
В6 (пиридоксин)Участвует в кроветворении, синтезе белков кожи и нервной системыЗаболевания кожи-дерматитыЗародыши пшеницы, рисовые отруби2-4
В15 (пангамовая кислота)Повышает поглощение клетками кислородаНедостаточность сердечно-сосудистой системыСвежие фрукты и овощи200-300
С (аскорбиновая кислота)Отвечает за иммунитет, участвует в белковом обмене, образовании органического вещества костейЦинга-кровоточивость десен, сонливость, снижается иммунитетМорковь, шпинат, лимон, апельсин, смородина и другие75-100
Жирорастворимые витамины
А (ретинол)Влияет на рост и развитие человеческого организмаНарушение зрения, рост и развития ребенка, снижается иммунитетМасло, молоко, рыбная икра, яичный белок, морковь, шпинат1-2
D (кальциеферол)Участвует в синтезе и регуляции кальция и фосфораРахит – тяжелые изменения в костях и скелете человека с нарушениями опорно-двигательного аппаратаРыбий жир, яичный желток, молоко. Синтезируется кожей при попадании на нее прямых солнечных лучей.0,02-0,05
Е (токоферол)Влияет на репродуктивную систему и процессы зачатияБесплодиеРастительные масла10-15
К(филохинин)Влияет на свертываемость кровиКровотечения, нарушение свертываемостиСинтезируется микроорганизмами кишечникаНе установлено

Смотри также:

Источник: https://bingoschool.ru/manual/306/

Терморегуляция – это… Терморегуляция и обмен веществ

Обмен веществ и энергии терморегуляция

Терморегуляция – это механизм, который позволяет живым организмам поддерживать постоянство внутренней среды. Большинство процессов в теле человека зависят от температуры: обмен веществ, синтез белков и гормонов, пищеварение, когнитивные функции. Кроме того, перегрев или переохлаждение могут привести к серьезным заболеваниям и даже смерти.

Диапазон температур

Для нормальной жизнедеятельности человека крайне важна терморегуляция. Температура тела здоровых людей находится в узком диапазоне от 36.0 до 37.0 по Цельсию. Резкое снижение или увеличение данных значений обычно приводит к летальному исходу.

На жаре человек интенсивно потеет. Потеря жидкости таким способом приводит к обезвоживанию, иногда довольно серьезному. Вместе с потом организм покидают витамины и минеральные вещества. Из-за дегидратации кровь становится гуще, нарушается обмен веществ.

Нормальная потеря воды во время потоотделения – до трех процентов от общей массы тела. Если это значение перевалило за шестипроцентный барьер, страдают когнитивные функции. Для смертельного исхода достаточно двадцати процентов. Кроме того, существует еще одна опасность.

Во время длительного пребывания на солнце организм накапливает больше тепла, чем отдает в окружающую среду, и по закону термодинамического равновесия постепенно тело человека нагревается до температуры воздуха, то есть до 39-41 градуса Цельсия. Это влечет за собой тепловой удар и потерю сознания.

Сердечно-сосудистая система тоже работает на износ: пульс учащается, давление повышается, кровь с трудом проходит по сосудам.

Переохлаждение не менее опасно для человека. На холоде сосуды организма сужаются, что вызывает ишемию тканей. И если воздействие холодной температуры длительное, то возможно отмирание участков кожи или мышц. Низкие температуры влияют и на обмен веществ, который совершается в несколько раз быстрее, так как организму нужна энергия для обогрева.

Ядро и оболочка

Условно все тело человека можно разделить на два уровня: ядро и оболочка. Ядро (по большей части это внутренние органы) имеет постоянную температуру около тридцати семи градусов.

Это достигается балансом между теплопродукцией и теплоотдачей. Оболочка же представляет собой барьер между окружающей средой и ядром толщиной 2,5 см.

Терморегуляция – это способность оболочки поддерживать постоянную температуру ядра.

Кожа здорового человека на разных участках может нагреваться от 24 до 36,6 градусов. Самые холодные – кончики пальцев, а самое теплое место – подмышка. Колебания температуры тела в течение суток достигают одного градуса: самая низкая – рано утром, а высокая – в шесть вечера.

Теплообразование и теплоотдача

Что такое терморегуляция и как она поддерживается в организме человека? На этот вопрос ответить не так легко, как кажется на первый взгляд.

В нашем теле непрерывно образуется тепло, которое по большей части расходуется на обогрев внешней среды. Это процесс называется теплообменом.

Регулируется он при помощи нервной системы, от результатов его зависят обмен веществ, деятельность сердца, сокращение мышц и т. д.

В норме теплопродукция равна теплоотдаче, то есть наблюдается изотермия. Причины терморегуляции просты – это помогает сохранить неприкосновенной температуру ядра и обеспечить определенную независимость организма от внешних условий.

За час в человеке образует достаточно тепла для того, чтобы закипятить литр воды. И если бы не теплоотдача, то уже через трое суток после рождения все мы в буквальном смысле сварились бы изнутри.

Поэтому процессы, помогающие людям избавиться от лишнего тепла, крайне важны.

Закаливание

Терморегуляция и закаливание идут рука об руку. Организм приспосабливается к воздействию все более низких или высоких температур, формируются новые механизмы сохранения постоянной температуры ядра.

В домашних условиях известно несколько самых распространенных способов закаливания. Например, обтирание прохладной водой. В первый раз вода должна быть 30 градусов, затем 28, 26 и так, пока не дойдет до 15 градусов Цельсия.

Когда организм привыкнет к холоду, можно с обтираний переходить на обливания или душ. Эффективными признали также воздушные и солнечные ванны. Поначалу продолжительность сеансов не должна превышать 15 минут, но со временем можно довести время до 60.

Однако стоит помнить, что длительная инсоляция может привести к проблемам с кожей и онкологическим заболеваниям.

Терморецепторы

Кожа в терморегуляции организма играет ключевую роль. Как самый большой орган человеческого организма, она выполняет множество функций, в том числе содержит терморецепторы (холодовые и тепловые).

Известно, что холодовых примерно в десять раз больше, поэтому мы гораздо чувствительнее к низким температурам. Наибольшее скопление рецепторов находится на лице, шее, а меньше всего – в кончиках пальцев. Однако чувствительность у них имеет обратную пропорцию относительно количества.

Несмотря на то что тепловых рецепторов больше они почти в два раза чувствительнее, чем холодовые.

Виды терморегуляции

Терморегуляция – это целый конгломерат процессов, направленных на поддержание постоянной температуры тела при помощи теплообмена.

Механизм работы этой системы можно описать при помощи принципа «обратной связи».

То есть сначала изменяется температура окружающей среды, на это реагируют рецепторы кожи и передают сигнал в головной мозг. А уже оттуда идет регуляция выработки тепла и его отдачи.

Все процессы терморегуляции можно разделить на два вида:

– физические;

– химические.

Физическая терморегуляция, в свою очередь, делится на испарение, излучение, теплопроведение и конвекцию. Среди химических процессов выделяют сократительный и несократительный термогенез.

Физическая терморегуляция

Физическая терморегуляция – это совокупность процессов, обеспечивающих удаление тепла из организма. Для этого природой предусмотрено несколько способов:

– кондукция;

– конвекция;

– радиация;

– испарение.

Кроме того, организм может регулировать интенсивность кровообращения и степень расширения сосудов кожи, что также влияет на потерю тепла. Еще один механизм отдачи тепла – потоотделение. Оно наиболее эффективно в случае жаркого климата или искусственного повышения температуры окружающей среды.

В состоянии покоя, при комфортной температуре в 20 градусов Цельсия, человек путем излучения теряет около шестидесяти процентов тепла, испаряет всего двадцать, а остальное приходится на кондукцию и конвекцию. Всего за час мы теряем около ста килокалорий или четырехсот девятнадцать джоулей.

Испарение и излучение

Испарение – это выделение энергии в окружающее пространство за счет потери влаги через кожу или слизистые. Иначе этот процесс называется потоотделение. Находясь в комфортной температуре (около двадцати градусов Цельсия), человек каждый час теряет около 36 грамм жидкости. При повышении температуры или интенсивной работе это показатель увеличивается иногда до двух литров в час.

Если воздух сухой, то высокая температура переносится человеком сравнительно хорошо, так как есть возможность для испарения пота. Однако во влажном климате даже тридцать градусов жары могут быть смертельны.

Излучение – путь отдачи тепла при помощи электромагнитного излучения. Человек излучает тепло начиная с того момента, как температура окружающей среды падает ниже температуры тела, то есть практически всегда.

Чтобы предотвратить потерю тепла в холодное время хода, нужно оставить минимальное количество открытых участков кожи.

Одежда может приостановить излучение и уменьшить количество выделяемого тепла, но полностью прекратить его не в состоянии.

Даже положение тела участвует в терморегуляции. Когда животному или человеку холодно, он старается сгруппироваться (свернуться), чтобы как можно меньше поверхности тела контактировало с внешней средой. И наоборот, если тепло, то и люди и животные стараются раскрыться, чтобы увеличить площадь кожи для излучения.

Кондукция и конвекция

Кондукция проявляется, когда человек соприкасается с другими телами. Она зависит от времени контакта, площади предмета и теплопроводности материала.

Для того чтобы не получить обморожение или не заболеть, необходимо придерживаться элементарных правил:

– не сидеть на холодных камнях;

– зимой не хватать голыми руками металлические предметы;

– на природе не сидеть на голой земле, а всегда что-то подкладывать (спальник, коврик, одежду);

– не ходить в мокрой одежде зимой.

Конвекция – это динамичный способ потери тепла, который осуществляется движущимися частицами воды или воздуха, например, такие потоки создает ветер или вентилятор. Если просто, то тело, выделяя тепло, нагревает воздух рядом с кожей.

Он становится легче, чем холодный, и поднимается выше, а его место занимает новая порция.

Когда мы оказываемся на ветру или быстро движемся, воздух вокруг нас тоже перемещается быстрее, следовательно, тепло не задерживается возле кожи надолго.

Химическая терморегуляция

Терморегуляция и обмен веществ – тесно связанные понятия. Химический способ как раз основывается на изменении интенсивности процесса окисления и вибрации мышц.

Энергию для обогрева организма получают путем гидролиза АТФ (аденозинтрифосфат). Он необходим для превращения сложных соединений в более простые.

Тепло, которое при этом выделяется, рассеивается в окружающем пространстве. Это несократительный термогенез.

В зависимости от температуры окружающей среды обмен веществ может ускоряться или замедляться для сохранения постоянства ядра. Наиболее комфортно человек себя чувствует при 18-20 градусах Цельсия. Но это для воздуха.

Вода же сильнее проводит тепло, поэтому и температура должна быть выше. Больше всего тепла производят мышцы во время аэробного гликолиза. Поэтому, когда нам холодно, тело начинает дрожать, чтобы увеличить теплопродукцию.

Это состояние называется сократительный термогенез.

Управление терморегуляцией

Терморегуляция мозга проходит так же, как и всего остального организма, с той разницей, что именно здесь находится центр, который всем процессом и управляет. В гипоталамусе расположен центр терморегуляции, координирующий скорость обменных процессов, сокращение мышц, и тонус сосудов кожи.

Чувствительные нервные клетки этого участка мозга могут различить колебания до сотых и тысячных долей градуса. Они анализируют поступающую информацию и по принципу обратной связи регулируют внутреннюю температуру, устанавливая ее в зависимости от внешних обстоятельств.

В подчинении у гипоталамуса находятся щитовидная железа и надпочечники. Первая влияет на скорость обмена веществ, а вторые – на тонус сосудов и окислительные процессы в мышцах. Используя нейромедиаторы и гормоны, гипоталамус корректирует состояние организма в соответствии с обстоятельствами.

Источник: https://FB.ru/article/262868/termoregulyatsiya---eto-termoregulyatsiya-i-obmen-veschestv

Физиология обмена веществ и энергии

Обмен веществ и энергии терморегуляция

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях восполняет энергозатраты организма.

Синтез сложных специфичных веществ организма из простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом.

Два этих процесса неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ.

С их помощью энергия образующаяся в результате диссимиляции передается для процессов ассимиляции.

Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются.

Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми. Т.е. не могут образовываться в организме.

Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин.

Состояние белкового обмена оценивается по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка.

Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего азота больше, чем выделенного, это называется положительным азотистым балансом. В организме происходит задержка или ретенция азота.

Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс.

Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обеспечивает потребности организма называется белковым оптимумом.

Минимальное, обеспечивающее лишь сохранение азотистого баланса – белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.

Жирами организма являются триглицериды, фосфолипиды и стерины. Они также имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органелл. Основная их роль энергетическая.

При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела.

Покрывая внутренние органы жировая ткань выполняет и пластическую функцию. Например околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды являются источниками воды, потому что при окислении 100 г жира образуется около 100 г воды.

Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов. Содержащийся в его жировых клетках полипептид тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты – линолевая, линоленовая и арахидоновая.

Они не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль, т.к. служат основным источником энергии для клеток. Потребности нейронов покрываются исключительно глюкозой. Углеводы аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение. Глюкоза необходима для образования нуклеотидов и синтеза некоторых аминокислот.

Методы измерения энергетического баланса организма

Соотношение между количеством энергии, поступившей в организм с пищей, и энергии, выделенной организмом во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмом энергии.

  1. Прямая калориметрия. Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплоообменных труб, в которых циркулирует и нагревается вода.
  2. Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом (ДК).

Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например в молекуле углеводов атомов кислорода много, Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1.

В молекуле липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешанном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше 1 при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры.

Меньше 0,7 он бывает при переходе жиров в углеводы. Исходя из дыхательного коэффициента рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ.

Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов “Метатест-2”, “Спиролит”.

Величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент.

Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г.

Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а да азотсодержащих продуктов.

Основной обмен

Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях, т.е.

лежа с расслабленными мышцами, при температуре комфорта, натощак. Согласно закону поверхности, сформулированному в 19 веке Рубнером и Рише, величина основного прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела.

Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, состояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. У детей его величина относительно веса тела больше, чем в зрелом возрасте, а у пожилых наоборот меньше. В холодном климате или зимой он возрастает, летом снижается.

При гипертиреозе он значительно увеличивается, а гипотиреозе снижается. В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин 1550.

Общий обмен энергии

Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически-динамического действия пищи. Рабочая прибавка это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих:

  1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.
  2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.
  3. Лица занятые частично механизированным трудом (шофера). 2500-3700 ккал/сут.
  4. Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут. Специфически-динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%.

Физиологические основы питания. Режимы питания

В зависимости от возраста, пола, профессии потребление белков, жиров и углеводов должно составлять: у мужчин I-IV групп Б: 96-108 г, Ж: 90-120 г, У: 382-552 г; у женщин I-IV групп Б: 82-92 г, Ж: 77-102 г, У: 303-444 г.

В прошлом веке Рубнер сформулировал закон изодинамии, согласно которому пищевые вещества могут взаимозаменяться по своей энергетической ценности. Однако он имеет относительное значение, так как белки, выполняющие пластическую роль, не могут синтезироваться из других веществ. Это же касается незаменимых жирных кислот.

Поэтому требуется питание сбалансированное по всем питательным веществам. Кроме того необходимо учитывать усвояемость пищи. Это соотношение всосавшихся и выделившихся с калом питательных веществ. Наиболее легко усваиваются животные продукты.

Поэтому животный белок должен составлять не менее 50% суточного белкового рациона, а жиры не более 70% жирового.

Под режимом питания подразумевается кратность приема пищи и распределение ее калорийности на каждый прием. При трехразовом питании на завтрак должно приходится 30% калорийности суточного рациона, обед 50%, ужин 20%.

При более физиологичном четырехразовом, на завтрак 30%, обед 40%, полдник 10%, ужин 20%. Интервал между завтраком и обедом не более 5 часов, а ужин должен быть не менее чем за 3 часа до сна.

Часы приема пищи должны быть постоянными.

Обмен воды и минеральных веществ

воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в воде составляет 20-40 мл/кг веса.

С жидкостями поступает около 1200 мл воды, пищей 900 мл и 300 мл образуется в процессе окисления питательных веществ. Минимальная потребность в воде составляет 1700 мл.

При недостатке воды наступает дегидратация и если ее количество в организме снижается на 20% наступает смерть. Избыток воды сопровождается водной интоксикацией с возбуждением ЦНС и судорогами.

Натрий, калий, кальций, хлор необходимы для нормального функционирования всех клеток, в частности обеспечения механизмов формирования мембранного потенциала и потенциалов действия. Суточная потребность в натрии и калии 2-3 г, кальции 0,8 г, хлоре 3-5 г.

Большое количество кальция находится в костях. Кроме того он нужен для свертывания крови, регуляции клеточного метаболизма. Основная масса фосфора также сосредоточена в костях. Одновременно входит а состав фосфолипидов мембран, участвует в процессах метаболизма.

Суточная потребность в нем 0,8 г. Большая часть железа содержится в гемоглобине и миоглобине. Оно обеспечивает связывание кислорода. Фтор входит в состав эмали зубов. Сера в состав белков и витаминов. Цинк является компонентом ряда ферментов. Кобальт и медь необходимы для эритропоэза.

Потребность во всех этих микроэлементах от десятков до сотен мг в сутки.

Регуляция обмена веществ и энергии

Высшие нервные центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную систему и гипоталамо-гипофизарную систему. Симпатический отдел ВНС стимулирует процессы диссимиляции, парасимпатический ассимиляцию.

В нем же находятся центры регуляции водно-солевого обмена. Но главная роль в регуляции этих базисных процессов принадлежит железам внутренней секреции. В частности инсулин и глюкагон регулируют углеводный и жировой обмены. Причем инсулин тормозит выход жира из депо.

Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды натрий-калиевый. Основная роль в регуляции энергетического обмена принадлежит тиреоидным гормонам. Они резко усиливают его. Они же главные регуляторы белкового обмена.

Значительно повышает энергетический обмен и адреналин. Большое его количество выделяется при голодании.

Источник: https://zen.yandex.ru/media/id/5e5e295efc936829ebeee025/fiziologiia-obmena-vescestv-i-energii-5e9460bb07c62d399475a5f5

О вашем здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: