Образование пепсина регуляция гомеостаза

Содержание
  1. Переваривание белков начинается в желудке
  2. Регуляция желудочного пищеварения
  3. Соляная кислота
  4. Функции соляной кислоты
  5. Изменение кислотности в желудке
  6. Пепсин
  7. Превращение пепсиногена в пепсин
  8. Гастриксин
  9. Пепсин: инструкция по применению фермента при сыроварении
  10. Что такое протеаза? Определение протеазы и роль в организме
  11. Основные составляющие желудочного сока
  12. Типы протеаз
  13. Трипсин
  14. Химотрипсин
  15. Бромелайн
  16. Папаин
  17. Срок годности
  18. 1.Действие протеазы в организме для улучшения пищеварения
  19. 2.Действие протеазы в организме — способствование поглощению аминокислот
  20. 3.Действие протеазы в организме — повышает иммунную функцию
  21. 4.Действие протеазы в организме — предотвращает образование тромбов и атеросклероз
  22. 5.Действие протеазы в организме — ускоряет восстановление тканей
  23. Гуморальная регуляция организма
  24. Влияние нейрогуморальной регуляции на организм
  25. Виды желез и задачи гормонов в организме
  26. Пример нейрогуморальной регуляции
  27. Характеристика, функции, примеры и механизмы поддержания гомеостаза
  28. Особенности и роль гомеостаза
  29. Клеточный гомеостаз
  30. Примеры и механизмы гомеостаза
  31. Температура тела
  32. Концентрация глюкозы
  33. Уровни кальция
  34. Объем жидкости
  35. Механизмы гомеостаза
  36. Гомеостатические реакции, противодействующие отклонению гомеостатической константы
  37. Переключение регуляции гомеостаза с внутренних нейрогуморальных механизмов на внешние поведенческие

Переваривание белков начинается в желудке

Образование пепсина регуляция гомеостаза

Расщепление белков до аминокислот начинается в желудке, продолжается в двенадцатиперстной кишке и заканчивается в тонком кишечнике. В некоторых случаях распад белков и превращения аминокислот могут происходить также в толстом кишечнике под влиянием микрофлоры.

Протеолитические ферменты подразделяют по особенности их действия на экзопептидазы, отщепляющие концевые аминокислоты, и эндопептидазы, действующие на внутренние пептидные связи.

В желудке пища подвергается воздействию желудочного сока, включающего соляную кислоту и ферменты. К ферментам желудка относятся две группы протеаз с разным оптимумом рН, которые упрощенно называют пепсин и гастриксин. У грудных детей основным ферментом является реннин.

Регуляция желудочного пищеварения

Регуляция осуществляется нервными (условные и безусловные рефлексы) и гуморальными механизмами. К гуморальным регуляторам желудочной секреции относятся гастрин и гистамин.

Гастрин секретируется специфичными G-клетками пилорического отдела:

  • в ответ на раздражение механорецепторов,
  • в ответ на раздражение хеморецепторов (продукты первичного гидролиза белков),
  • под влиянием n.vagus.

Далее гастрин через системный кровоток достигает и стимулирует главные, обкладочные и добавочные клетки, что вызывает секрецию желудочного сока, в большей мере соляной кислоты. Также он обеспечивает секрецию гистамина, влияя на ECL-клетки (enterochromaffin- cells, англ. энтерохромаффиноподобные клетки).

Гистамин, образующийся в энтерохромаффиноподобных клетках слизистой оболочки желудка (фундальные железы), выходит в кровоток, взаимодействует с Н2-рецепторами на обкладочных клетках и увеличивает в них синтез и секрецию соляной кислоты.

Закисление желудочного содержимого (pH 1,0) по механизму обратной отрицательной связи  подавляет активность G-клеток, снижает секрецию гастрина и желудочного сока.

Соляная кислота

Одним из важнейших компонентов желудочного сока является соляная кислота. В образовании соляной кислоты принимают участие париетальные (обкладочные) клетки желудка, секретирующие ионы Н+. Источником ионов Н+ является угольная кислота, образуемая ферментом карбоангидразой.

При ее диссоциациии , кроме ионов водорода, образуются карбонат-ионы НСО3–. Они по градиенту концентрации движутся в кровь в обмен на ионы Сl–.

В полость желудка ионы Н+ попадают энергозависимым антипортом с ионами К+ (Н+,К+-АТФаза), хлорид-ионы перекачиваются в просвет желудка также с затратой энергии.

Н+,К+-АТФаза (протонная помпа) является мишенью действия лекарственных препаратов “ингибиторов протонной помпы” – омепразол, пантопразол и др., используемых для лечения заболеваний желудочно-кишечного тракта, связанных с повышенной кислотностью (гастриты, язвы желудка и 12-перстной кишки, дуоденит).

При нарушении нормальной секреции HCl возникают гипоацидный или гиперацидный гастрит, отличающиеся друг от друга по клиническим проявлениям, последствиям и требуемой схеме лечения.

Функции соляной кислоты

  1. Денатурация белков пищи.
  2. Бактерицидное действие.
  3. Высвобождение железа из комплекса с белками, что необходимо для его всасывания. Аналогично высвобождаются и другие металлы.
  4. Высвобождение различных органических молекул, прочно связанных с белковой частью (гем, коферменты – тиаминдифосфат, ФАД, ФМН, пиридоксальфосфат, кобаламин, биотин), что позволяет витаминам впоследствии всасываться.
  5. Превращение неактивного пепсиногена в активный пепсин.
  6. Снижение рН желудочного содержимого до 1,5-2,5 и создание оптимума рН для работы пепсина.
  7. После перехода в 12-перстную кишку – стимуляция секреции кишечных гормонов и, следовательно, выделения панкреатического сока и желчи.

Кислая реакция желудочного сока обусловлена, главным образом, присутствием HCl, гораздо в меньшей степени иона H2PO4-, при патологиях (гипо- и анацидное состояние, онкология) свой вклад может вносить молочная кислота.

Совокупность всех веществ желудочного сока, способных быть донорами протонов, составляет общую кислотность.

Соляную кислоту, находящуюся в комплексе с белками, мукополисахаридами слизистой оболочки и продуктами переваривания, называют связанной соляной кислотой, оставшуюся часть – свободной соляной кислотой. свободной HCl подвержено изменениям, в то же время количество связанной HCl относительно постоянно.

Влияние гастрина и гистамина на обкладочные клетки сводится к усилению работы Н+,К+-АТФазы. Действие гастрина заключается в активации кальций-фосфолипидного механизма передачи сигнала, гистамин действует по аденилатциклазному механизму. 

Изменение кислотности в желудке

Гипоацидное состояние развивается при снижении активности и/или количества обкладочных клеток, синтезирующих HCl. В результате могут развиваться самые разнообразные последствия, прямо или косвенно связанные с невыполнением соляной кислотой ее функций:

  • снижение переваривания белков как в желудке, так и в кишечнике,
  • активация процессов брожения в желудке, запах изо рта, 
  • активация процесса гниения белков в толстой кишке, бурление в кишечнике и метеоризм,
  • проникновение недопереваренных продуктов в кровь и, как следствие, аллергические реакции,
  • уменьшение высвобождения от белков и возникновение дефицита минеральных веществ (железо, медь, магний, цинк, йод и др),
  • снижение высвобождения от белков и всасывания ряда водорастворимых витаминов – развитие гиповитаминозов (B1, B2, B6, B12, H),
  • снижение синтеза обкладочными клетками внутреннего фактора Касла и снижение всасывания витамина B12,
  • снижение секреции кишечных гормонов и, как следствие, уменьшение выделения желчи и панкреатического сока,
  • нарушение переваривания и всасывания липидов и, как следствие, развитие гиповитаминозов по жирорастворимым витаминам. 

 Гиперацидное состояние развивается при повышенной активности обкладочных клеток. Может приводить к клиническим проявлениям в виде воспаления стенки желудка, эрозии и язвенной болезни желудка и двенадцатипеперстной кишки. 

Пепсин

Пепсин является эндопептидазой, то есть он расщепляет внутренние пептидные связи в молекулах белков и пептидов. Синтезируется в главных клетках желудка в виде неактивного профермента пепсиногена, в котором активный центр “прикрыт” N-концевым фрагментом.

При наличии соляной кислоты конформация пепсиногена изменяется таким образом, что “раскрывается” активный центр фермента, который отщепляет остаточный пептид (N-концевой фрагмент), т.е. происходит аутокатализ.

В результате образуется активный пепсин, активирующий и другие молекулы пепсиногена.

Превращение пепсиногена в пепсин

Пепсин обладает невысокой специфичностью,  в основном он гидролизует пептидные связи, образованные аминогруппами ароматических аминокислот (тирозина, фенилаланина, триптофана), меньше и медленнее – аминогруппами и карбоксигруппами лейцина, глутаминовой кислоты и т.д. Оптимум рН для работы пепсина 1,5-2,0.

Гастриксин

Гастриксин по своим функциям близок к пепсину, его количество в желудочном соке составляет 20-50% от количества пепсина. Синтезируется главными клетками желудка в виде прогастриксина (профермент) и активируется соляной кислотой.

Оптимум рН гастриксина соответствует 3,2-3,5 и значение этот фермент имеет при питании молочно-растительной пищей, слабее стимулирующей выделение соляной кислоты и одновременно нейтрализующей ее в просвете желудка.

Гастриксин является эндопептидазой и гидролизует связи, образованные карбоксильными группами дикарбоновых аминокислот.

В течение суток синтезируется около 2 г пепсина.  Объем работы пепсина составляет примерно 10% от всех пептидных связей белков, попадающих в желудок.

Наличие в желудке двух протеаз, действующих при различных pH, позволяет организму пепсином переваривать белки мясной пищи, стимулирующей секрецию HCL, а гастриксином – белки растительно-молочной пищи.

Источник: https://biokhimija.ru/obmen-belkov/perevarivanie-zheludke.html

Пепсин: инструкция по применению фермента при сыроварении

Образование пепсина регуляция гомеостаза

Ферменты необходимы буквально для каждого химического воздействия, которое происходит в нашем организме — от пищеварения до иммунной функции и кровотока. Действие протеазы в организме направлено на то, чтобы мы хорошо видели, думали и дышали. Что такое протеаза? Это фермент, который позволяет расщеплять белки в организме.

Из-за этого протеолитические ферменты находятся на переднем крае биологических исследований. Они стали основным направлением для фармацевтической промышленности. Согласно научному обзору, опубликованному в «Биохимическом журнале»:

«Преобладающее использование протеаз было при лечении сердечно-сосудистых заболеваний. Однако протеазы становятся полезными агентами при лечении сепсиса, расстройств пищеварения, воспаления, кистозного фиброза. А также заболеваний сетчатки, псориаза и много другого»

Но что именно делает протеаза, и почему она так важна для нашего общего здоровья? Это сложные ферменты, и исследователи все еще изучают их роль в организме человека. Давайте попробуем разобраться и понять их важность.

Что такое протеаза? Определение протеазы и роль в организме

Протеазы были названы биологической версией швейцарских армейских ножей, способных разрезать длинные последовательности белков на фрагменты. Протеаза — это фермент, который расщепляет длинные, цепочечные молекулы белков, чтобы они могли перевариваться.

Этот процесс называется протеолизом. Он превращает белковые молекулы в более короткие фрагменты, называемые пептидами, а в конечном итоге в их компоненты, называемые аминокислотами. Нам нужен постоянный запас аминокислот для правильного роста и восстановления.

Белки — жесткая, сложная, свернутая структура, и их можно разбить или разобрать только с помощью ферментов протеазы. Процесс переваривания белков начинается в желудке, где соляная кислота раскрывает белки, а фермент пепсин начинает их разбирать.

Поджелудочная железа выделяет ферменты протеазы (главным образом, трипсин). А в кишечнике они разрывают белковые цепи на более мелкие кусочки. Затем ферменты на поверхности и внутри кишечных клеток разрушают кусочки еще больше.

Они превращают их в аминокислоты, которые готовы к употреблению во всем организме.

Когда эти ферменты протеазы не присутствуют в организме для расщепления белковых молекул, кишечная оболочка не сможет их переварить. Это может привести к серьезным проблемам со здоровьем.

Протеазы вырабатываются поджелудочной железой, а также обнаруживаются в некоторых фруктах, бактериях и других микробах. Пищеварительный тракт продуцирует три различных формы протеазы: трипсиноген, химотрипсиноген и прокарбоксипептидазу. Эти три протеазы атакуют разные пептидные связи, что позволяет генерировать аминокислоты, строительные блоки белка.

В чем заключается действие протеазы в организме? Практически во всем! Эти ферменты обеспечивают правильную работу нашей пищеварительной и иммунной систем, почек, печени, селезенки, поджелудочной железы и кровотока.

Протеаза играет роль в регулировании метаболической функции и позволяет витаминам и минералам, которые мы принимаем, работать должным образом.

И, кроме того, протеазы необходимы для нормального функционирования гормонов и способствуют восстановлению мышц и заживлению тканей.

Основные составляющие желудочного сока

В состав желудочного сока человека входят многочисленные компоненты: ферменты, соляная кислота, слизь, вещества белковой структуры. Каждая составляющая имеет свое предназначение. Слаженная работа компонентов сока обеспечивает переработку сложных соединений, которыми представлена пища, в простые.

Весомая роль в процессе пищеварения отводится 5 основным веществам:

  1. Соляная кислота – важная составляющая пищеварительного сока. Она отвечает за поддержание нормальной кислотности внутри желудка, способствует превращению пепсиногена в пепсин. HCl обеспечивает надежную защиту от вирусов и бактерий. Большинство патогенных микроорганизмов не выдерживают кислой среды и погибают.
  2. Бикарбонаты участвуют в реакции нейтрализации HCl. Агрессивная соляная кислота способна оказывать повреждающее действие на поверхность слизистой желудка и 12–перстной кишки. Бикарбонаты защищают слизистую.
  3. Пепсиноген является предшественником пепсина. Под действием последнего расщепляются белки. Вырабатывается главными клетками слизистой.
  4. Слизь обеспечивает надежную защиту внутренней оболочке желудка от агрессивных компонентов сока (пепсина и соляной кислоты). Она находится в двух состояниях: в составе желудочного сока и образует толстый слой геля на стенках желудка с концентрацией бикарбонатов. Они нейтрализуют НСl. Таким образом, внутренняя поверхность желудка имеет механическую (непроницаема для пепсина) и химическую защиту (нейтрализация кислоты). Муцин постоянно расходуется и непрерывно образуется благодаря активной работе добавочных клеток и желез.
  5. Внутренний фактор Касла – фермент, специализирующийся на активации витамина B₁₂. Секрет образуется и сосредоточен в обкладочных клетках фундальных желез.

Нарушение секреции любого компонента пищеварительного сока может закончиться развитием хронических заболеваний ЖКТ, но в первую очередь пострадает сам желудок.

Типы протеаз

Ферменты протеазы часто классифицируются на основании их происхождения. Некоторые протеазы вырабатываются в нашем организме, некоторые в растениях, а другие имеют микробное происхождение. Различные типы протеаз имеют разные биологические процессы и механизмы.

Наша пищеварительная система естественным образом производит три типа протеаз: пепсин, трипсин и химотрипсин. Вот разбивка этих трех типов протеаз:

Трипсин

Трипсин — это протеазный фермент, который вырабатывается в поджелудочной железе в неактивной форме, называемой трипсиногеном. Затем он смешивается с желчью и попадает в тонкий кишечник, где превращается в активный трипсин. Трипсин работает с пепсином и химотрипсином для расщепления белков на пептиды и аминокислоты.

Химотрипсин

Химотрипсин также вырабатывается в поджелудочной железе и действует как компонент сока поджелудочной железы в тонкой кишке. Он расщепляет молекулы белка на пептиды. Химотрипсин активируется в присутствии трипсина.

Протеазы также содержатся в определенных пищевых продуктах и ​​доступны в виде добавок. Существуют два типа ферментов протеаз на растительной основе:

Бромелайн

Бромелайн — протеаза, которая содержится в стебле и соке ананаса. Добавки бромелайна обычно используются при расстройствах пищеварения, более быстром восстановлении после операций или травм. А также симптомов аллергии, синусовых инфекций и болей в суставах.

Папаин

Папаин — это протеазный фермент, который содержится в латексе папайи, особенно когда он незрелый. Папаин стимулирует пищеварение и улучшает общее усвоение питательных веществ, поэтому его часто используют в пищеварительных ферментных добавках.

Срок годности

У ферментной добавки множество применений – с нее готовят брынзу, сулугуни или адыгейский сыр. Срок годности продукта, полученного в результате естественного процесса брожения, напрямую зависит от качества закваски.

Готовый сыр хранится в рассоле, если такое условия предусмотрено в рецептуре, поэтому порошок влияет и на продолжительность хранения сырной массы.

Фермент в большинстве случаев производится в виде сухого порошка. До момента взаимодействия с кислой средой с ним не происходят химические реакции. Вещество в пакетиках, предназначенный для изготовления сыра, хранится до 3-х лет.

Окончательный срок хранения фермента обозначен на упаковке. Порошок, взаимодействующий с окружающей средой, хранится меньше.

Действие, способы хранения, срок годности вещества – взаимосвязанные процессы. Если порошок находится в герметической упаковке, срок его хранения продлевается. Качественная добавка влияет на продолжительность срока годности сырной массы.

1.Действие протеазы в организме для улучшения пищеварения

Ферменты играют важную роль в нашем пищеварительном здоровье, и правильное пищеварение зависит от протеазных процессов. Они обладают отчетливой способностью разрушать пептидные связи и выделять аминокислоты.

Протеазы необходимы для расщепления белков, чтобы они могли перевариваться. Они также расщепляют другие отходы, включая токсины.

Это важно для пищеварительной и иммунной функций, поскольку предотвращает токсическую перегрузку, которая может вызвать у нас заболевания.

Исследования показывают, что протеолитические ферменты, особенно бромелайн, помогают уменьшить тяжесть симптомов, связанных с воспалительными заболеваниями кишечника. А также язвенным колитом, благодаря их противовоспалительным свойствам.

2.Действие протеазы в организме — способствование поглощению аминокислот

Протеаза позволяет поглощать аминокислоты, которые жизненно необходимы для построения и восстановления тканей. Белок состоит из определенной последовательности аминокислот.

Когда протеаза разделяет эти последовательности на части, это позволяет нам использовать аминокислоты для ряда функций организма. Нам необходим оптимальный баланс аминокислот для поддержания гомеостаза в организме.

Поскольку они регулируют основные метаболические пути, необходимые для роста, поддержания иммунитета и репродукции.

3.Действие протеазы в организме — повышает иммунную функцию

Протеазные ферменты увеличивают активность естественных клеток-киллеров и разрушают патогенные комплексы, способные снижать нормальную иммунную функцию. Исследования показывают, что папаин, трипсин и другие протеазы могут предотвращать или разрушать существующие патогенные иммунные комплексы. Тем самым усиливая лимфодренаж и укрепляя иммунную систему.

Патогенные комплексы являются нормальной частью иммунной системы. Однако, когда они возникают в избытке, то могут вызывать определенные заболевания. В том числе заболевания почек, ревматологические заболевания и воспаления нервов.

4.Действие протеазы в организме — предотвращает образование тромбов и атеросклероз

Протеаза улучшает качество наших клеток крови. Эти ферменты ответственны за образование и растворение сгустков крови. Они также обладают антикоагулянтным, противовоспалительным и антигипертензивным действием.

Протеазные добавки были разработаны и используются для лечения тромботических заболеваний с 1970-х годов.

Папаин, протеаза, найденная в папайях, может помочь предотвратить утолщение кровеносных сосудов, заболевание сердца, называемое атеросклерозом.

Бромелайн, протеаза, содержащаяся в ананасе, обладает антикоагулянтными свойствами и может снизить риск образования тромбов. Они приводят к таким опасным осложнениям, как ишемическая болезнь сердца, легочная эмболия и инсульт.

5.Действие протеазы в организме — ускоряет восстановление тканей

С древних времен протеазы использовались для содействия восстановлению тканей. Согласно научному обзору, опубликованному в журнале «Advances in Therapy»

«Трипсин и химотрипсин помогают уменьшить воспаление и способствуют более быстрому восстановлению острого повреждения ткани»

Источник: https://PrioritetMed.ru/bolezni-zhkt/solyanuyu-kislotu-vyrabatyvayut-zhelezy-zheludka.html

Гуморальная регуляция организма

Образование пепсина регуляция гомеостаза

Эти изменения в организме происходят благодаря сложному механизму нейрогуморальной регуляции, сформированному в процессе эволюции, чтобы человек смог наиболее оптимально приспособиться к изменяющимся условиям внешней среды.

Влияние нейрогуморальной регуляции на организм

Нейрогуморальная регуляция обеспечивает практически все процессы жизнедеятельности организма:

  • рост и развитие
  • пищеварение,
  • работу сердечно-сосудистой системы,
  • дыхание

Нервная и гуморальная системы у высших животных и человека работают в тандеме и при слаженной работе обеспечивают быструю реакцию на изменяющиеся условия внешней среды.

Как вы можете заметить, слово нейрогуморальная состоит из двух частей — нервная и гуморальная регуляция.

В данной статье мы подробнее разберем гуморальную регуляцию, хотя стимулы к выделению биологически активных веществ дает нервная система.

Гуморальная регуляция (от humor — «жидкость») обеспечивается с помощью различных жидкостей организма и растворенных в них биологически активных веществ (гормонов, ферментов, медиаторов и т.д.).

Гормоны (от греческого — hormao «приводить в движение», «побуждать») — вещества, синтезирующиеся железами внутренней секреции, обладающие способностью воздействовать через рецепторы на процессы, происходящие в живой клетке.

Для каждого типа гормонов существуют свои рецепторы, которые подходят друг к другу, как ключик к замку. И если это взаимодействие ломается, то в организме происходят серьезные заболевания.

Например, механизм развития сахарного диабета описан на странице 49 учебника «Биология 8 класс» под редакцией Сивоглазова И.В.

Виды желез и задачи гормонов в организме

В организме гормоны выделяются железами – специальными органами, состоящими из секреторных клеток, и синтезирующими определенные вещества. Железы вырабатывают не только гормоны, но и другие вещества или секреты, помогающие работе внутренних органов.

По взаимодействию с внешней средой железы делятся на три типа:

  • Эндокринные, или внутренней секреции. К данному типу относятся гипофиз, щитовидная железа. Они не связаны протоками с внешней средой, выделяют гормоны непосредственно в кровь. Работа щитовидной железы подробно описана на странице 50 учебника «Биология 8 класс» под редакцией Сивоглазова И.В.
  • Экзокринные, или внешней секреции. К данному типу относятся потовые и сальные железы кожи, слюнные железы в полости рта, железы желудка. С помощью протоков железы выделяют секрет либо во внешнюю среду, либо в полости организма.
  • Смешанной секреции: половые железы, поджелудочная железа. В эндокринной части поджелудочной железы синтезируются гормоны инсулин и глюкагон , выделяющиеся в кровь и регулирующие углеводный обмен, а в экзокринной — пищеварительные ферменты, которые через сфинктер Одди выделяются в 12-перстную кишку и участвуют в пищеварении.

Дирижером в слаженном оркестре желез внутренней секреции является гипофиз. Именно в нем вырабатываются гормон роста и тиреотропный, адренокортикотропный, гонадотропные гормоны, которые отдают команду железам внутренней секреции выделить необходимый набор веществ, чуткому влиянию которых подчиняются органы и ткани организма.

Еще одна железа, спрятанная в толще головного мозга, с помощью гормона мелатонина отвечает за режим сна и бодрствования, участвует в регуляции процессов возрастных изменений и оказывает влияние на углеводный обмен.

 Она называется эпифиз, второе ее название – шишковидное тело или по-латыни corpus pineale.

За такое название стоит благодарить неизвестного древнего анатома, который впервые увидел ее на вскрытии и за сходство с шишкой дал название.

Характерно для гуморальной регуляции организма человека то, что задачи гормонов в организме многочисленны. Они могут как стимулировать функцию, так и угнетать ее. Биологически активные вещества влияют на:

  • рост и деление клеток;
  • участвуют в метаболизме и поддерживают постоянство внутренней среды или гомеостаз;
  • влияют на половое созревание, наступление беременности, способность выносить младенца, запускают роды и наступление менопаузы.

Пример нейрогуморальной регуляции

На примерах из жизни сложные вещи понимаются лучше. И нейрогуморальная регуляция не исключение.

Ранним утром семиклассник Ваня просыпается от аромата свежей булочки с творогом, которую бабушка испекла на завтрак. Мальчик заходит на кухню, и от запаха и вида лакомства его рот наполняется слюной.

Он садится за стол, кладет в рот ароматный кусочек, начинает пережевывать, а в желудке в это время выделяется желудочный сок.

По-научному процесс можно описать так — раздражаются механорецепторы полости рта — сигнал поступает в продолговатый мозг (задействована нервная система). Из продолговатого мозга к клеткам желудка отправляется сигнал, и желудок начинает готовиться к приему пищи и выделять ферменты (пепсин и другие).

Булочка по пищеводу попадает в желудок.

Пепсин расщепляет белок до аминокислот. В стенке желудка есть рецепторы, которые чувствуют присутствие аминокислоты.

Аминокислота связывается с рецепторами, организм понимает, что часть белков уже переварилась, и уменьшает выработку пепсина.

В тоже время активно включается поджелудочная железа с выработкой пищеварительных секретов и гормонов, и с помощью веществ осуществляется гуморальная регуляция.

Но в процесс пищеварения могут вмешаться внешние факторы, например контрольная по алгебре. А мы помним, что на внешние факторы первой реагирует вегетативная нервная система (НС), которая делится на симпатическую и парасимпатическую. Легко запомнить, что за что отвечает: симпатическая — стресс, парасимпатическая — покой.

Как думаете, в каком случае будет лучше происходить пищеварение: когда нужно решить 10 задачек, или когда на последней парте можно спокойно считать ворон, глядя в окно?

При стрессе начинает выделяться гормон симпатической НС — адреналин. Контейнера с адреналином в организме нет, так откуда же берется этот гормон?

Адреналин выделяют надпочечники, но прямого сообщения у надпочечников и желудка нет. Значит, гормону каким-то образом нужно попасть к желудку. Надпочечники выбрасывают гормон в кровоток, и уже с током крови гормон разносится по всему организму, ослабляет работу желудка, позволяя мобилизоваться и справиться со стрессом.

Парасимпатическая НС, наоборот, усиливает работу желудка. Поэтому, чтобы хорошо переварить тортик, не надо нервничать.

Для проверки знаний по теме предлагаем пройти тест, а чтобы уверенно с ним справиться, рекомендуем повторить параграф 8 в учебнике Биология 8 класс под редакцией В.И.Сивоглазова.

Методические советы учителям

Тест

1. К железам внутренней секреции относят…

  • поджелудочную железу;
  • половые железы;
  • щитовидную железу.

2. Половые железы…

  • эндокринные;
  • экзокринные;
  • смешанные.

3. Адреналин выделяет…

  • щитовидная железа;
  • гипофиз;
  • надпочечники.

4. Причина сахарного диабета…

  • поджелудочная железа вырабатывает много инсулина;
  • поджелудочная железа вырабатывает мало инсулина;
  • инсулин вообще не причем.

5. Как гормоны влияют на функцию клеток-мишеней?

  • усиливают;
  • угнетают;
  • зависит от гормона.

 #ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/gumoralnaya-regulyatsiya-organizma/

Характеристика, функции, примеры и механизмы поддержания гомеостаза

Образование пепсина регуляция гомеостаза

Гомеостаз – любой саморегулирующийся процесс, с помощью которого биологические системы устремляются к поддержанию внутренней стабильности, приспосабливаясь к оптимальным для выживания условиям.

Если гомеостаз успешен, то жизнь продолжается; в противном случае, произойдет бедствие или смерть.

Достигнутая стабильность фактически является динамическим равновесием, в котором происходят непрерывные изменения, но преобладают относительно однородные условия.

Особенности и роль гомеостаза

Любая система в динамическом равновесии желает достичь устойчивого состояния, баланса, который противостоит внешним изменениям.

Когда такая система нарушена, встроенные регулирующие устройства реагируют на отклонения, чтобы установить новый баланс. Такой процесс является одним из элементов управления с обратной связью.

Примерами гомеостатической регуляции являются все процессы интеграции и координации функций, опосредованные электрическими цепями и нервными или гормональными системами.

Другим примером гомеостатической регуляции в механической системе является действие регулятора комнатной температуры или термостата.

Сердцем термостата является биметаллическая полоса, которая реагирует на изменения температуры, завершая или нарушая электрическую цепь.

Когда помещение охлаждается, то контур завершается и включается обогрев, а температура поднимается. На заданном уровне цепь прерывается, печь останавливается, и температура падает.

Однако биологические системы, имеющие большую сложность, обладают регуляторами, которые сложно сравнивать с механическими устройствами.

Как отмечалось ранее, термин гомеостаз относится к поддержанию внутренней среды тела в узких и жестко контролируемых пределах. Основными функциями, важными для поддержания гомеостаза, являются баланс жидкости и электролита, регулирование кислотной среды, терморегуляция и метаболический контроль.

Контроль температура тела у людей считается отличным примером гомеостаза в биологической системе.

Нормальная температура тела человека составляет около 37° C, но различные факторы могут влиять на этот показатель, включая гормоны, скорость метаболизма и болезни, приводящие к чрезмерно высоким или низким температурам. Регулирование температуры тела контролируется областью мозга, называемой Гипоталамус.

Обратная связь о температуре тела переносится через кровоток в мозг и приводит к компенсационным корректировкам в скорости дыхания, уровне сахара в крови и скорости метаболизма. Потеря тепла у людей обеспечивается уменьшением активности, потоотделением и механизмами теплообмена, которые позволяют большему количеству крови циркулировать вблизи поверхности кожи.

Снижение потерь тепла осуществляется за счет изоляции, уменьшения циркуляции на коже и культурных изменений, таких как использование одежды, жилья и сторонних источников тепла.

Диапазон между высокими и низкими уровнями температуры тела составляет гомеостатическое плато – «нормальный» диапазон, который поддерживает жизнь.

По мере приближения к любой из двух крайностей, корректирующее действие (через отрицательную обратную связь) возвращает систему в нормальный диапазон.

Концепция гомеостаза также применяется к экологическим условиям. Впервые предложенная американским экологом Робертом Макартуром в 1955 году идея, что гомеостаз в экосистемах является продуктом сочетания биоразнообразия и большого количества экологических взаимодействий, происходящих между видами.

Такое предположение считалось концепцией, которая могла бы помочь объяснить устойчивость экологической системы, то есть ее сохранение как определенного типа экосистемы с течением времени.

С тех пор концепция несколько изменилась, и включила неживую составляющую экосистемы.

Этот термин использовался многими экологами для описания взаимности, которая происходит между живыми и неживыми составляющими экосистемы для поддержания статус-кво.

Гипотеза Геи – модель Земли, предложенная английским ученым Джеймсом Лавлоком, которая рассматривает различные живые и неживые составляющие, как компоненты более крупной системы или единого организма, делая предположение, что коллективные усилия отдельных организмов вносят вклад в гомеостаз на планетарном уровне.

Клеточный гомеостаз

Клетки зависят от среды тела, чтобы сохранять жизнеспособность и правильно функционировать. Гомеостаз поддерживает среду тела под контролем и сохраняет благоприятные условия для клеточных процессов. Без правильных условий тела определенные процессы (к примеру, осмос) и белки (к примеру, ферменты) не будут функционировать должным образом.

Почему гомеостаз важен для клеток? Живые клетки зависят от движения химических веществ вокруг них. Химические вещества, такие как кислород, углекислый газ и растворенная пища, необходимо транспортировать в клетки и из них. Это осуществляется процессами диффузии и осмоса, зависящих от баланса воды и соли в теле, которые поддерживаются гомеостазом.

Клетки зависят от ферментов, чтобы ускорить многие химические реакции, поддерживающие жизнедеятельность и функциональность клеток. Эти ферменты работают лучше всего при определенных температурах, и поэтому снова гомеостаз жизненно важен для клеток, поскольку он поддерживает постоянную температуру тела.

Примеры и механизмы гомеостаза

Вот несколько основных примеров гомеостаза в теле человека, а также поддерживающие их механизмы:

Температура тела

Наиболее распространенным примером гомеостаза у людей является регулирование температуры тела. Нормальная температура тела, как мы писали выше составляет 37° C. Температура выше или ниже нормальных показателей может вызывать серьезные осложнения.

Мышечная недостаточность возникает при температуре 28° C. При 33° C происходит потеря сознания. При температуре 42° C центральная нервная система начинает разрушаться. Смерть наступает при температуре 44° C. Тело контролирует температуру путем выработки или высвобождения избыточного тепла.

Концентрация глюкозы

Концентрация глюкозы относится к количеству глюкозы (сахара в крови), присутствующего в кровотоке.

Организм использует глюкозу в качестве источника энергии, но ее избыток или недостаток может вызвать серьезные осложнения. Некоторые гормоны осуществляют регулирования концентрации глюкозы в крови.

Инсулин снижает концентрацию глюкозы, в то время как кортизол, глюкагон и катехоламины увеличивают.

Уровни кальция

Кости и зубы содержат приблизительно 99% кальция в организме, в то время как оставшийся 1% циркулируют в крови. Слишком большое или недостаточное содержание кальция в крови имеют негативные последствия. Если уровень кальция в крови слишком сильно снижается, паращитовидные железы активируют свои рецепторы, чувствительные к кальцию, и высвобождают паратиреоидный гормон.

ПТГ сигнализирует костям он необходимости высвобождения кальция, чтобы увеличить его концентрацию в кровотоке. Если уровень кальция увеличивается слишком сильно, щитовидная железа высвобождает кальцитонин и фиксирует избыток кальция в костях, тем самым уменьшая количество кальция в крови.

Объем жидкости

Тело должно поддерживать постоянную внутреннюю среду, а это означает, что ему необходимо регулировать потерю или восполнение жидкости. Гормоны помогают регулировать этот баланс, вызывая экскрецию или удерживание жидкости.

Если организму не хватает жидкости, антидиуретический гормон сигнализирует почкам о сохранении жидкости и уменьшает выход мочи.

Если организм содержит слишком много жидкости, он подавляет альдостерон и сигнализирует о выделении большего количества мочи.

Источник: https://NatWorld.info/raznoe-o-prirode/harakteristika-funkcii-primery-i-mehanizmy-podderzhanija-gomeostaza

Механизмы гомеостаза

Образование пепсина регуляция гомеостаза

Сазонов В.Ф. Механизмы гомеостаза

Гомеостаз в биологии – это поддержание постоянства внутренней среды организма.
В основе гомеостаза лежит чувствительность организма к отклонению определённых параметров (гомеостатических констант) от заданного значения.

Пределы допустимых колебаний гомеостатического параметра (гомеостатической константы) могут быть широкими и узкими. Узкие пределы имеют: температура тела, рН крови, содержание глюкозы в крови. Широкие пределы имеют: давление крови, масса тела, концентрация аминокислот в крови.

Специальные внутриорганизменные рецепторы (интерорецепторы) реагируют на отклонение гомеостатических параметров от заданных пределов. Такие интерорецепторы имеются внутри таламуса, гипоталамуса, в сосудах и в органах.

В ответ на отклонение параметров они запускают восстановительные гомеостатические реакции.

Общий механизм нейроэндокринных гомеостатических реакций для внутренней регуляции гомеостаза

Параметры гомеостатической константы отклоняются, интерорецепторы возбуждаются, затем возбуждаются соответствующие центры гипоталамуса, они стимулируют выброс гипоталамусом соответствующих либеринов. В ответ на действие либеринов происходит выброс гормонов гипофизом, а затем под их действием идёт выброс гормонов других эндокринных желёз.

Гормоны, выделившись из желёз внутренней секреции в кровь, изменяют обмен веществ и режим работы органов и тканей. В итоге установившийся новый режим работы органов и тканей смещает изменившиеся параметры в сторону прежнего заданного значения и восстанавливает величину гомеостатической константы.

Таков общий принцип восстановления гомеостатических констант при их отклонении.

Примеры
Мочеобразование и выведение мочи. Дыхание: чувствительность к избытку СО2 заставляет дышать чаще и восстанавливать тем самым стандартную концентрацию СО2. Теплообмен.

Механизм гомеостаза первого порядка

Гомеостаз поддерживается механизмами нескольких уровней, как это обычно свойственно иерархическим системам. При отклонении избранного параметра от средней линии в сторону верхнего или нижнего предела сразу же включаются “ближайшие” компенсационные механизмы, которые гасят это отклонение.

Собственно это и будет называться регуляцией гомеостаза как устойчивого состояния, а поскольку процессы автоматизированы за счёт отрицательных обратных связей, то данное явление можно назвать саморегуляцией.
Итак, колебание гомеостатической константы допустимо в определённых пределах.

За счет автоматического гашения отклонений гомеостатический параметр настойчиво возвращается к средней линии. В идеале данный механизм стремится миминизировать колебания гомеостатического параметра вокруг средней линии. Чем лучше работает этот механизм, тем меньше будут колебания.

Можно назвать это первым гомеостатическим механизмом, он является базовым. Например, именно так работают различные буферные системы, компенсирующие небольшие отклонения, в частности отклонения в рН среды.

Механизм гомеостаза второго порядка

Это регуляция гомеостаза второго порядка, которая накладывается на первый механизм поддержания гомеостаза.

При выходе гомеостатического параметра за определённый верхний или нижний предел допустимых колебаний включается гомеостатический механизм второго порядка и возвращает параметр в заданные пределы.

Если происходят какие-либо более мощные изменения и достигаются более амплитудные пределы, то подключаются механизмы гомеостаза следующего уровня и так далее.

Механизм гомеостаза третьего порядка

При длительном или постоянном смещении гомеостатического параметра от средней линии к одному из пределов (верхнему или нижнему) включаются компенсационные процессы по гашению процесса смещения, для возврате параметра к средней линии. Система этого вида гомеостаза чувствительна к длительному общему смещению средней линии вверх или вниз. Механизмы компенсации должны быть другими, по сравнению с гомеостазом первого порядка.

В качестве примера можно представить себе нормально работающий холодильник, в котором вдруг начали непрерывно открывать и закрывать дверцу. Обычных механизмов поддержания холода при этом становится уже недостаточно.Признаки холодильника с хорошим гомеостазом:1.

Не допускает значительных отклонений от средней линии.2. Быстро компенсирует появившиеся отклонения3. Имеет способность к самообучению – в процессе адаптации размах колебания уменьшается.

В отличие от искусственных автоматических систем гомеостатические живые системы, обладают уникальным свойством пластичности. Они перестраивают свою деятельность в результате постоянной нагрузки определённого рода.

Самый впечатляющий пример биологической пластичности – это смена знака при управлении обратной связью с «-» на «+» и наоборот.

Гомеостатические реакции, противодействующие отклонению гомеостатической константы

1. Обратимые кратковременные функциональные изменения.

Пример:

При повышении температуры окружающей среды повышается температура тела. В ответ на это начинается кратковременное усиление потоотделения. За счёт этого усиливается испарение и, как следствие – происходит охлаждение организма. После нормализации температуры тела потоотделение возвращается к норме. Таким образом, это было обратимое кратковременное функциональное изменение.

2. Обратимые долговременные функциональные изменения.

Пример:

При воздействии…

3. Необратимые долговременные функциональные изменения.

4. Обратимые кратковременные структурные изменения.

5. Обратимые долговременные структурные изменения.

Пример:

При воздействии на организм интенсивного солнечного света возникают повреждения глубоких слоёв кожи. В ответ на это начинается усиление выработки пигмента меланина клетками кожи. В результате появляется загар, который препятствует глубокому проникновению солнечных лучей под кожу.

Процесс повреждения клеток солнечным светом прекращается. После прекращения действия солнечного света через длительный срок пигмент исчезает, и кожные покровы возвращаются к первоначальному состоянию. Таким образом, это был пример обратимого долговременного структурного изменения.

6. Необратимые долговременные структурные изменения.

7. Кратковременные поведенческие реакции.

8. Долговременные поведенческие изменения.

9. Наследственные изменения.

10. Изменения образа жизни.

11. Изменения популяции.

12. Изменение биологического вида.

Переключение регуляции гомеостаза с внутренних нейрогуморальных механизмов на внешние поведенческие

Для понимания того, как просиходит переключение регуляции гомеостаза с внутренних механизмов на внешние, необходимо рассмотреть представления о потребности и мотивации с точки зрения психофизиологии.

1. Сенсорные интерорецепторы, реагирующие на изменение гомеостатических констант организма, через афферентные нейроны передают возникающее в них сенсорное возбуждение в соответствующие функциональные нервные центры продолговатого мозга, среднего мозга и гипоталамуса, которые можно назвать центрами биорегуляции.

2. В этих функциональных нервных центрах определяется отклонение данных констант от нормы. Отклонение констант в заданных пределах устраняется за счёт регуляторных возможностей самих функциональных центров.

3. Однако при отклонении любой гомеостатической константы выше или ниже допустимых пределов функциональные центры передают возбуждение выше: в “потребностные центры” гипоталамуса. Это необходимо для того, чтобы переключиться с внутренней нейрогуморальной регуляции гомеостаза на внешнюю — поведенческую.

4. Возбуждение того или иного потребностного центра гипоталамуса формирует соответствующее ему функциональное состояние, которое субъективно переживается как потребность в чём-то: пище, воде, тепле, холоде или сексе. Возникает активирующее и побуждающее к действию психоэмоциональное состояние неудовлетворённости.

5. Для организации целенаправленного поведения необходимо выбрать только одну из потребностей в качестве первоочередной и создать для её удовлетворения рабочую доминанту.

Считается, что главную роль в этом играют миндалины мозга (Сorpus amygdoloideum).

Получается, что на основе одной из потребностей, которые формирует гипоталамус, миндалина создаёт ведущую мотивацию, организующую целенаправленное поведение для удовлетворения только одной этой избранной потребности.

6. Следующим этапом можно считать запуск подготовительного поведения, или драйв-рефлекса, который должен повысить вероятность для запуска исполнительного рефлекса в ответ на пусковой стимул. Драйв-рефлекс побуждает организм к созданию такой ситуации, в которой будет повышена вероятность обнаружения объекта, подходящего для удовлетворения текущей потребности.

Это может быть, например, перемещение в место, богатое пищей, или водой, или сексульными партнёрами, в зависимости от ведущей потребности.

Когда же в достигнутой ситуации обнаруживается конкретный объект, подходящий для удовлетворения данной доминантной потребности, то он запускает исполнительное рефлекторное поведение, направленное на удовлетворение потребности с помощью именно этого объекта.

© 2014-2018 Сазонов В.Ф.  © 2014-2016 kineziolog.bodhy.ru. © 2016-2018 kineziolog.su.

Системы гомеостаза – подробный образовательный ресурс по гомеостазу.

Источник: https://kineziolog.su/content/mehanizmy-gomeostaza

О вашем здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: