Отрицательная обратная связь формула

Содержание
  1. Обратная связь.Часть 2.Влияние на свойства усилителя
  2. Коэффициент передачи цепи обратной связи
  3. Влияние ОС на входное сопротивление усилителя
  4. Влияние ОС на выходное сопротивление усилителя
  5. Теория Электроники §9. Операционные Усилители часть 1
  6. Предварительные сведения об обратной связи
  7. Операционные усилители
  8. Важные правила для ОУ
  9. Отрицательная обратная связь, часть 1: общая структура и основные понятия
  10. Не только операционные усилители..
  11. Почему обратная связь?
  12. Абстрактный усилитель с обратной связью
  13. Замыкание петли
  14. Заключение
  15. Теги
  16. Отрицательная и положительная обратная связь в усилителе (ООС и ПОС)
  17. Что такое положительная обратная связь ПОС
  18. Что такое отрицательная обратная связь ООС
  19. Подводя итог об обратной положительной и отрицательной связи (ПОС и ООС)
  20. 4. Обратная связь и её влияние на параметры усилителя. Основы схемотехники. Курс лекций
  21. 4.1. Основные понятия и виды обратной связи в усилителях
  22. 4.2. Влияние обратной связи на коэффициент усиления по напряжению
  23. 4.3. Влияние отрицательной обратной связи на нестабильность усиления
  24. 4.4. Влияние ООС на нелинейные искажения и помехи
  25. 4.5. Влияние ООС на выходное и входное сопротивления усилителя
  26. 4.6. Влияние ООС на амплитудно-частотную характеристику усилителя
  27. 4.7. Устойчивость усилителей с обратной связью

Обратная связь.Часть 2.Влияние на свойства усилителя

Отрицательная обратная связь формула

Всем доброго времени суток. Продолжаем рассматривать обратную связь. В прошлой статье я раскрыл понятие обратной связи в усилителях, а также привел схемы различных видов ОС. Сегодня я расскажу о влиянии ОС на параметры усилителя.

Коэффициент передачи цепи обратной связи

Как известно цепь ОС влияет на входное напряжение усилительного каскада. Данное влияние происходит следующим образом: напряжение от внешнего источника усиливается усилителем в К раз и снимается с сопротивления нагрузки RH. Так как напряжение с сопротивления нагрузки поступает на вход цепи ОС, то выходное напряжение усилителя UBbIX будет равно входному напряжению цепи ОС UCB

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

тогда напряжение на выходе цепи ОС или напряжение ОС будет равно

При прохождении сигнала через цепь ОС может произойти сдвиг фаз между напряжением внешнего источника сигнала и напряжением на выходе цепи ОС, поэтому коэффициент β может принимать различный знак.

Если разность фаз между этими сигналами равна 0°, то возникает положительная обратная связь (ПОС) и коэффициент β принимает положительный знак (+) и может принимать значения β = 0…+1, а в случае если разность фаз составит 180°, то возникает отрицательная обратная связь (ООС) и коэффициент β принимает отрицательный знак (–) и может принимать значения β = 0…–1.

Таким образом, напряжение на входе усилительного каскада с цепью ОС составит

так как коэффициент усиления усилителя без ОС является отношением выходного напряжения к входному напряжению

то общий коэффициент усиления с цепью ОС КОС составит

тогда объединив данные выражения, получим

разделив выражение на UBbIX

и в окончательном виде выражение для коэффициента усиления усилителя с цепью ОС будет выглядеть

Данная формула является одной из основных в теории обратной связи.

С введением ООС в усилитель вводится понятие глубины обратной связи, которое определяется следующим выражением

Глубина обратной связи определяет, насколько изменяется коэффициент усиления каскада при введении ОС. От данного параметра зависят все основные параметры усилителя с ООС, изменение которых происходит пропорционально глубине ОС.

Обычно глубина ОС выбирается в промежутке

так как при FOC ≤ 2 обратная связь незначительно влияет на свойства усилительного каскада, в то время как при FOC ≥ 4 изначальный коэффициент усиления каскада значительно уменьшается.

Влияние ОС на входное сопротивление усилителя

Входным сопротивлением усилителя называют сопротивление переменному току между зажимами, на которые поступает напряжение внешнего источника сигнала. В многокаскадных усилителях входное сопротивление обычно подключается параллельно сопротивлению нагрузки предыдущего каскада, тем самым уменьшая его, а как следствие, снижая усиление предыдущего каскада.

При отсутствии обратной связи характеристики усилительного каскада зависит только от свойств усилительного элемента.

Входное сопротивление, которого можно представить в виде параллельно соединённого резистора и конденсатора.

С увеличением частоты входного сигнала реактивное сопротивление конденсатора уменьшается, тем самым шунтируя резистор и уменьшая входное сопротивление усилительного элемента и каскада в целом.

В случае применения обратной связи, входное сопротивление усилителя будет зависеть от типа применённой ОС (последовательная или параллельная). Обозначим входное сопротивление усилителя с ОС RBX.OC, входное сопротивление усилителя без обратной связи RBX, сопротивление цепи обратной связи ROC тогда

Тогда для последовательной обратной связи выведем входное сопротивление. Так как при действии ОС напряжение внешнего сигнала не изменяется

где знак при напряжении UOC зависит от связи: «+» соответствует ПОС, а «–» соответствует ООС.

Разделив все члены выражения на входной ток IBX, получим

Таким образом, в случае введения последовательной ПОС в усилитель входное сопротивление будет иметь следующее значение

Данное выражение показывает, что с введением ПОС происходит уменьшение входного сопротивление усилительного каскада и при достаточно сильной ПОС входное сопротивление может становиться равным нулю или даже отрицательным. В последнем случае можно говорить о так называемом «отрицательном» сопротивлении, что соответствует отдаче энергии, а в общем случае генерировании колебаний.

Когда в усилитель вводится последовательная ООС, то входное сопротивление будет иметь следующий вид

Данное выражение говорит о том, что входное сопротивление усилителя увеличивается, что положительно влияет на усилитель в целом.

В случае введения параллельной ОС имеет смысл говорить о входных токах. Так под действием обратной связи ток внешнего источника сигнала не изменяется

В данном случае имеет смысл говорить о проводимостях, тогда проводимость усилительного каскада без ОС YBX, проводимость каскада с ОС YBX.OC, проводимость цепи ОС YOC

Тогда входная проводимость усилительного каскада с учётом цепи ОС составит

Таким образом при введении в усилитель параллельной ПОС выражение принимает вид

из данного выражения видно, что параллельная ПОС уменьшает входную проводимость усилительного каскада, то есть увеличивается входное сопротивление, но при некоторых значениях (YBX = YOC(K – 1)) Входное сопротивление может принимать нулевые и отрицательные значения.

При введении в усилительный каскад параллельной ООС входное сопротивление будет иметь следующий вид

То есть будет происходить увеличение входной проводимость, а, следовательно, уменьшение входного сопротивления усилительного каскада.

Влияние ОС на выходное сопротивление усилителя

Выходное сопротивление усилительного каскада является сопротивлением переменному току между его выходными зажимами, с которых снимается усиленное напряжение сигнала, поступающего на вход усилительного каскада.

Выходное сопротивление также как и входное сопротивление усилителя с обратной связью определяется лишь типом применённой обратной связи (ОС по току или ОС по напряжению). Оно может быть найдено способом аналогичным нахождению входного сопротивления усилительных каскадов с ОС, поэтому приведу только окончательные формулы для различных видов ОС.

Выходное сопротивление при обратной связи по напряжению:

для ПОС

для ООС

Таким образом, применение ПОС по напряжению приводит к возрастанию выходного сопротивления, а при значении βК ≥ 1 переходит к «отрицательному» сопротивлению и превращению в генератор. В случае применения ООС по напряжению происходит уменьшение выходного сопротивления, что положительно сказывается на свойствах усилительного каскада.

Выходное сопротивление при обратной связи по току:

для ПОС (без учёта RH (сопротивления нагрузки), которое подключается параллельно RBbIX.OC)

для ООС (без учёта RH (сопротивления нагрузки), которое подключается параллельно RBbIX.OC)

Также как и ОС по напряжению, ОС по току при ПОС вначале увеличивает выходное сопротивление, затем превращается в «отрицательное» сопротивление с генерированием колебаний. А ООС по току уменьшает выходное сопротивление.

Среди всех видов обратной связи лучшее применение находит последовательная обратная связь по напряжению, так как такая связь увеличивает входное сопротивление и приводит к уменьшению выходного сопротивления, что позволяет лучше согласовать параметры усилителя с предыдущими и последующими каскадами и нагрузкой усилителя.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: https://www.electronicsblog.ru/usilitelnaya-sxemotexnika/vliyanie-obratnoj-svyazi-na-svojstva-usilitelya.html

Теория Электроники §9. Операционные Усилители часть 1

Отрицательная обратная связь формула

Понятие «обратная связь» (ОС) относится к числу распространенных, оно давно вышло за рамки узкой области техники и употребляется сейчас в широком смысле.

В системах управления обратная связь используется для сравнения выходного сигнала с заданным значением и выполнения соответствующей коррекции.

В качестве «системы» может выступать что угодно, например, процесс управления движущимся по дороге автомобилем – за выходными данными (положением машины и ее скоростью) следит водитель, который сравнивает их с ожидаемыми значениями и соответственно корректирует входные данные (с помощью руля, переключателя скоростей, тормоза). В усилительной схеме выходной сигнал должен быть кратен входному, поэтому в усилителе с обратной связью входной сигнал сравнивается с определенной частью выходного сигнала.

Предварительные сведения об обратной связи

Отрицательная обратная связь – это процесс передачи выходного сигнала обратно на вход, при котором погашается часть входного сигнала. Может показаться, что это глупая затея, которая приведет лишь к уменьшению коэффициента усиления. Именно такой отзыв получил Гарольд С. Блэк, который в 1928 г.

попытался запатентовать отрицательную обратную связь. «К нашему изобретению отнеслись так же, как к вечному двигателю» (журнал IЕЕЕ Spectrum за декабрь 1977 г.).

Действительно, отрицательная обратная связь уменьшает коэффициент усиления, но при этом она улучшает другие параметры схемы, например, устраняет искажения и нелинейность, сглаживает частотную характеристику (приводит ее в соответствие с нужной характеристикой), делает поведение схемы предсказуемым.

Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью (без ОС), и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС.

Операционные усилители обычно используют в режиме глубокой обратной связи, а коэффициент усиления по напряжению в разомкнутой петле ОС (без ОС) достигает в этих схемах миллиона.

Цепь ОС может быть частотно-зависимой, тогда коэффициент усиления будет определенным образом зависеть от частоты (примером может служить предусилитель звуковых частот в проигрывателе со стандартом RIAA); если же цепь ОС является амплитудно-зависимой, то усилитель обладает нелинейной характеристикой (распространенным примером такой схемы служит логарифмический усилитель, в котором в цепи ОС используется логарифмическая зависимость напряжения Uбэ от тока в диоде или транзисторе). Обратную связь можно использовать для формирования источника тока (выходной импеданс близок к бесконечности) или источника напряжения (выходной импеданс близок к нулю), с ее помощью можно получить очень большое или очень малое входное сопротивление. Вообще говоря, тот параметр, по которому вводится обратная связь, с ее помощью улучшается. Например, если для обратной связи использовать сигнал, пропорциональный выходному току, то получим хороший источник тока.

Обратная связь может быть и положительной; ее используют, например, в генераторах. Как ни странно, она не столь полезна, как отрицательная ОС.

Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям.

Для того чтобы эти явления возникли, не нужно прикладывать большие усилия, а вот для предотвращения нежелательных автоколебаний прибегают к методам коррекции.

Операционные усилители

Операционный усилитель (ОУ) – это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным выходом.

Прообразом ОУ может служить классический дифференциальный усилитель с двумя входами и несимметричным выходом; правда, следует отметить, что реальные операционные усилители обладают значительно более высокими коэффициентами усиления и меньшими выходными импедансами, а также допускают изменение выходного сигнала почти в полном диапазоне питающего напряжения (обычно используют расщепленные источники питания ±15 В). Промышленность выпускает сейчас сотни типов операционных усилителей; условное обозначение, принятое для всех типов, представлено на рисунке ниже.

Входы обозначают (+) и (), и работают они, как можно догадаться, следующим образом: выходной сигнал изменяется в положительном направлении, когда потенциал на входе (+) становится более положительным, чем потенциал на входе (), и наоборот.

Символы «+» и «» не означают, что на одном входе потенциал всегда должен быть более положительным, чем на другом; эти символы просто указывают относительную фазу выходного сигнала (это важно, если в схеме используется отрицательная ОС).

Во избежание путаницы лучше называть входы «инвертирующий» и «неинвертирующий», а не вход «плюс» и вход «минус». На схемах часто не показывают подключение источников питания к ОУ и вывод, предназначенный для заземления.

Операционные усилители обладают колоссальным коэффициентом усиления по напряжению и никогда (за редким исключением) не используются без обратной связи. Можно сказать, что операционные усилители созданы для работы с обратной связью.

Коэффициент усиления схемы без обратной связи так велик, что при наличии замкнутой петли ОС характеристики усилителя зависят только от схемы обратной связи. Конечно, при более подробном изучении должно оказаться, что такое обобщенное заключение справедливо не всегда. Начнем мы с того, что просто рассмотрим, как работает операционный усилитель.

Важные правила для ОУ

1. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю. Операционный усилитель потребляет очень небольшой входной ток.

2. Входы операционного усилителя ток не потребляют. Здесь необходимо дать пояснение: правило 1 не означает, что операционный усилитель действительно изменяет напряжение на своих входах. Это невозможно.

Операционный усилитель «оценивает» состояние входов и с помощью внешней схемы ОС передает напряжение с выхода на вход, так что в результате разность напряжений между входами становится равной нулю (если это возможно).

Эти правила создают достаточную основу для рассмотрения схем на операционных усилителях, которые мы рассмотрим в следующей главе.

Для удобства навигации по разделу опубликована статья со ссылками, которые будут обновляться по мере добавления нового материала.

Источник: https://zen.yandex.ru/media/practical_electronics/teoriia-elektroniki-9-operacionnye-usiliteli-chast-1-5f0fee34c7a64e16ff38dd25

Отрицательная обратная связь, часть 1: общая структура и основные понятия

Отрицательная обратная связь формула

Данная статья, первая в серии, познакомит вас с основными понятиями, необходимыми для понимания и анализа усилителей с отрицательной обратной связью.

Не только операционные усилители..

В данной статье мы представим общую структуру отрицательной обратной связи и параметры, которые помогут нам проанализировать и реализовать эту структуру. Более конкретно, мы сосредоточимся на усилителе с отрицательной обратной связью.

Термин «усилитель» здесь немного вводит в заблуждение: эта структура не ограничивается простым увеличением амплитуды сигнала.

Этот «усилитель» может представлять собой систему с единичным усилением, которая предназначена для улучшения характеристик входного или выходного импеданса схемы, или это может быть фильтр, который усиливает определенные частоты при ослаблении других.

Почему обратная связь?

У нас есть выходная переменная некоторого вида, которой нужно управлять, но связь между управляющим входным параметром и фактическим поведением выходного параметра настолько сложна или непредсказуема, что было бы трудно, если не невозможно, точно регулировать выходной параметр просто используя заданный входной параметр. Рассмотрим два примера: у нас есть цифро-аналоговый преобразователь (ЦАП, DAC) с выходным напряжением, и мы хотим управлять 1) мощностью, рассеиваемой резистором, и 2) яркостью светодиода. Первая задача не требует отрицательной обратной связи, потому что связь между входным и выходным параметрами проста и предсказуема:

\[P= \frac{V2}{R}, \qquad V=\sqrt{PR}\]

Всё, что нам нужно сделать, это умножить желаемую мощность на сопротивление и затем взять квадратный корень. Это довольно простая математика для современного микроконтроллера, и, что более важно, это соотношение справедливо для любого резистора в любых условиях окружающей среды.

Но вторая задача не так проста. Вот график зависимости прямого тока от прямого напряжения для светодиода производства Avago:

Рисунок 1 – Вольт-амперные характеристики светодиодов Avago

Связь очень нелинейна и существенно зависит от типа светодиода; и хотя это и не показано на графике, эта связь также зависит от температуры. Теперь посмотрим на зависимость яркости от тока в прямом направлении:

Рисунок 2 – Зависимость яркость светодиода от его прямого тока

Эта связь довольно линейна, с минимальной разницей между двумя полупроводниковыми материалами. Итак, какой мы делаем из этого вывод? Было бы довольно просто точно регулировать яркость светодиодов, контролируя ток, и было бы довольно сложно точно регулировать яркость, контролируя напряжение.

Что делать? Добавьте отрицательную связь! Мы могли бы использовать напряжение ЦАП в качестве входного сигнала для усилителя с отрицательной обратной связью, который регулирует свое выходное напряжение в зависимости от того, какой ток протекает через светодиод (актуальная информация может быть измерена с помощью последовательного резистора).

Теперь у нас есть простая, предсказуемая связь между напряжением и яркостью.

Этот пример со светодиодом является одной из бесчисленных ситуаций, в которых было бы нежелательно или совершенно нецелесообразно реализовывать управление с разомкнутой петлей (т. е. без обратной связи).

Подумайте о регулировании температуры: как управление с разомкнутой петлей может учитывать все факторы, влияющие, например, на жилую комнату? Погодные условия, окна, двери, количество жильцов…

Но, как показывает повсеместное использование простого термостата, с небольшой отрицательной обратной связью эта проблема становится почти тривиальной.

Абстрактный усилитель с обратной связью

Когда вы посмотрите на эту диаграмму, постарайтесь уделить минуту, чтобы оценить элегантность отрицательной обратной связи.

Рисунок 3 – Абстрактный усилитель с отрицательной обратной связью

Путем простого вычитания фактического значения выходного параметра (умноженного на β) из опорного сигнала, и используя результат в качестве входного сигнала усилителя с разомкнутой петлей, мы можем точно управлять нагрузкой, даже когда связь вход→выход является несовместимой или сложной.

Ключевыми параметрами здесь являются A и β.

Зеленые надписи курсивом представляют название переменных для сигналов, проходящих через систему; в тексте статьи мы также используем слова (также выделенные курсивом) вместо переменных, обозначенных буквами, в надежде, что предстоящий анализ не будет казаться менее интуитивным, чем на самом деле. (Мы сохраняем A и β, потому что усилитель с обратной связью без A и β просто не будет усилителем с обратной связью.)

Так что же такое А и β? Об А сказать особо нечего: это усиление, которое вся система применила бы при отсутствии обратной связи.

В контексте схемы операционного усилителя (сравнение особенно уместно, потому что операционный усилитель является довольно прямым проявлением теоретического усилителя с обратной связью) А соответствует коэффициенту усиления операционного усилителя с разомкнутой петлей обратной связи.

С β всё не совсем так просто: коэффициент обратной связи β определяет, какая часть выходного сигнала возвращается обратно в узел вычитания. Вы можете думать о β как о части (выраженной в виде дроби) выходного сигнала, которая вычитается из управляющего сигнала. Это должно стать более понятным, если вы вспомните о базовой неинвертирующей схеме на операционном усилителе:

Рисунок 4 – Схема неинвертирующего усилителя на операционном усилителе

Два резистора, которые мы используем для настройки усиления, представляют собой не что иное, как делитель напряжения, который подает определенную часть выходного сигнала на инвертирующий вход операционного усилителя.

Напряжение на выходе резисторного делителя выражается отношением R1/(R1+R2), умноженным на напряжение на входе делителя. Таким образом, часть выходного сигнала (выраженная в виде дроби) возвращается и вычитается из управляющего сигнала, – то есть коэффициент обратной связи β составляет R1/(R1+R2).

Стоит потратить некоторое время на интуитивное понимание этой концепции, потому что β будет занимать важное место в следующей статье, где мы будем обсуждать стабильность.

Еще одно замечание об А и β: они не обязательно должны быть простыми константами, как, например, A = 106 и β = 0,1.

Они также могут быть представлены как функции от частоты, что означает, что значение A или β изменяется в зависимости от частоты сигнала, проходящего через систему усилителя.

Это особенно актуально для А – усиление операционных усилителей с внутренней компенсацией при разомкнутой петле обратной связи начинает падать на частотах начиная с 0,1 Гц!

Замыкание петли

Теперь мы кратко рассмотрим некоторые существенные связи и формулы, которые помогут нам лучше понять и проанализировать поведение усилителя с обратной связью. Во-первых, это математическое определение β:

\[\text{сигнал_обратной_связи} = \beta\times \text{выходной_сигнал},\\ \beta=\frac{\text{сигнал_обратной_связи}}{\text{выходной_сигнал}}\]

Это просто выражение того, что мы описали в предыдущем разделе. Далее следует прямая взаимосвязь между входным сигналом и выходным сигналом, которая очевидна из общей структурной схемы обратной связи, показанной выше:

\[\text{выходной_сигнал} = A\times \text{входной_сигнал}\]

Несколько более интересным является формула для коэффициента усиления с замкнутой петлей обратной связи (GОС), то есть общий коэффициент усиления усилительной системы, когда учитывается влияние отрицательной обратной связи.

\[G_{ОС}=\frac{\text{выходной_сигнал}}{\text{управляющий_сигнал}}=\\ = \frac{A\times \text{входной_сигнал}}{\text{входной_сигнал}+\text{сигнал_обратной_связи}}= \\ = \frac{A\times \text{входной_сигнал}}{\text{входной_сигнал}+(\beta\times \text{выходной_сигнал})}=\\ = \frac{\text{входной_сигнал} \times A}{\text{входной_сигнал} \times \left(1+\beta\frac{\text{выходной_сигнал}}{\text{входной_сигнал}}\right)}=\\ = \frac{A}{1+A\beta}\]

Эти соотношения довольно просты, но становятся еще лучше.

В типовых применениях усилителей с обратной связью величина Aβ (называемая «усилением петли») намного больше 1 – например, при коэффициенте усиления операционного усилителя без обратной связи 106 и коэффициенте обратной связи 0,1 коэффициент усиления петли равен 105. Таким образом, мы можем упростить выражение коэффициента усиления с обратной связью следующим образом:

\[G_{ОС}=\frac{A}{1+A\beta}\approx\frac{A}{A\beta}=\frac{1}{\beta}\]

И здесь мы видим именно то, что ожидаем от нашего опыта работы со схемами на операционных усилителях: усиление зависит только от β. Посмотрите еще раз на схему неинвертирующего усилителя на ОУ, показанную выше; все сходится, если вспомнить, что формула коэффициента усиления для стандартного неинвертирующего усилителя (Gнеинв) – это 1+(R2/R1):

\[G_{неинв}=1+\frac{R_2}{R_1},\\ G_{ОС}=\frac{1}{\beta}=\frac{R_1+R_2}{R_1}=\frac{R_1}{R_1}+\frac{R_2}{R_1}=1+\frac{R_2}{R_1}\]

Заключение

После представления отрицательной обратной связи и общего описания причин ее использования мы представили теоретическую модель, которая поможет нам проанализировать конкретные характеристики усилителя с отрицательной обратной связью.

Затем мы добавили немного математики, чтобы продемонстрировать наиболее заметное преимущество добавления отрицательной обратной связи – а именно: для всех практических целей общий коэффициент усиления системы полностью определяется простыми (и точными, если необходимо) внешними компонентами, составляющими цепь обратной связи.

В следующей статье мы рассмотрим некоторые дополнительные способы, с помощью которых отрицательная обратная связь может улучшить производительность схемы усилителя.

Оригинал статьи:

Теги

Обратная связьОтрицательная обратная связьОУ (операционный усилитель)Система управленияУсилитель с обратной связью

Источник: https://radioprog.ru/post/726

Отрицательная и положительная обратная связь в усилителе (ООС и ПОС)

Отрицательная обратная связь формула

В случае работы усилителя со своим конечным, то есть уже усилиенным сигналом проявляется прямое воздействие на его выходной уровень. То есть появляется так называемая обратная связь.

Фактически такую связь для простоты понимания можно сравнить с поездом, который движется по кольцевой и все вагоны прицеплены один за другим без разрыва.
 Так вот, это обратная связь бывает положительная, когда поезд ускоряется, и отрицательная, когда он тормозит.

Конечно, это все условные понятия, а чтобы было все понятно и достоверно, давайте разберем примеры ПОС и ООС все же не на примере поезда, а в электронике, где они и встречаются.

Что такое положительная обратная связь ПОС

 Положительная обратная связи, представляет собой такой тип, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое способствует дальнейшему отклонению выходного сигнала от первоначального значения, а в случае отрицательной обратной связи происходит полностью обратный процесс.

Многие из нас сталкивались с примером обратной связи, который происходит при работе набора звукоусилительной аппаратуры для выступлений: когда оратор держит микрофон слишком близко к динамикам возникает высокий «воющий» звук, что связано с тем, что аудио усилитель воспринимает и усиливает свой собственный шум.

Данное явление — пример положительной или регенеративной обратной связи, поскольку любой звук, поступающий в микрофон усиливается и превращается в ещё более громкий звук громкоговорителя и таким образом возникает петля обратной связи, в которой вибрация поддерживает сама себя, увеличиваясь всё больше и больше, в результате чего возникает шум с постоянно растущей громкостью, до тех пор пока система не входит в состояние «насыщения» и не может более усиливать звук.

Можно задаться вопросом, каковы возможные преимущества обратной связи в усилителях, учитывая такие раздражающие её проявления как «воющий» звук звукоусилительной аппаратуры для выступлений. Если мы введём в схему усилителя положительную или регенеративную обратную связь, то будет создана тенденция генерирования и поддержания колебаний, частота которых определяется значениями компонентов, осуществляющих подачу сигнала обратной связи с выхода на вход. Это один из способов сделать генератор, — схему для получения переменного тока от источника постоянного тока. Генераторы — чрезвычайно полезные схемы, и поэтому обратная связь может иметь определённое практическое применение.

Что такое отрицательная обратная связь ООС

Отрицательная обратная связь, с другой стороны, оказывает на усилитель «смягчающее» воздействие: при увеличении амплитуды выходного сигнала сигнал обратной связи противодействует изменению выходного сигнала.

В то время как положительная обратная делает систему менее устойчивой, отрицательная обратная связь действует противоположным образом: стабильность системы лишь увеличивается.

Усилитель, охваченный отрицательной обратной связью не только более стабилен, но также в меньшей степени искажает входной сигнал и, как правило, может усиливать в более широком диапазоне частот. Плата за эти преимущества (должны же быть иметься и недостатки отрицательной обратной связи, не так ли?) — уменьшение коэффициента усиления.

Если часть выходного сигнала усилителя «поступает обратно» на вход, и противодействует любым изменениям выходного сигнала, то для обеспечения той же что и раньше амплитуды на выходе требуется входной сигнал большей амплитуды. Именно этим обуславливается уменьшенный коэффициент усиления при наличии отрицательной обратной связи.

В любом случае, такие преимущества как стабильность, пониженный уровень искажения и более широкая полоса пропускания, стоят того, чтобы «пожертвовать” определённой частью усиления.

Рассмотрим простую схему усилителя и определим, как мы могли бы ввести в неё отрицательную обратную связь (см. рисунок ниже).

Усилитель с общим эмиттером без обратной связи

На схеме показан усилитель с общим эмиттером, в котором цепочка резисторов смещения образована резисторами R1 и R2.

Конденсатор связывает Vвх с усилителем таким образом, что источник сигнала не имеет напряжения постоянного тока, сообщённого делителем напряжения R1/R2. Резистор R3 служит для контроля над коэффициентом усиления напряжения.

При максимальном коэффициенте усиления напряжения данный резистор можно опустить, но поскольку подобные резисторы базы часто используются в схемах усилителей с общим эмиттером, на рисунке он показан.

Как и все усилители с общим эмиттером показанный усилитель инвертирует усиленный входящий сигнал. Иначе говоря, нарастающее напряжение входящего сигнала ведет к падению напряжения на выходе и наоборот. На рисунке ниже показаны формы кривой на осциллографе.

Усилитель с общим эмиттером без обратной связи и исходные формы кривой для сравнения

Поскольку выходной сигнал представляет собой копию входного сигнала в зеркальном отображении, любое соединение между выходом (коллектором) и входом (базой) транзистора (как показано на рисунке ниже) создаст отрицательную обратную связь.

Отрицательная обратная связь, коллекторная обратная связь ослабляет выходной сигнал

Резисторы R1, R2, R3 и Rобр.св.

вместе функционируют таким образом, что напряжение на базе транзистора (по отношению к земле) представляет собой среднее значение входного напряжения и напряжения обратной связи, что ведет к тому, что на транзистор поступает сигнал меньшей амплитуды. Таким образом, схема усилителя на рисунке выше будет иметь сокращенный коэффициент усиления напряжения, но лучшую линейность (меньшее искажение) и более широкую полосу пропускания

Подводя итог об обратной положительной и отрицательной связи (ПОС и ООС)

•    Обратная связь – подача выходного сигнала усилителя на его вход.•    Положительная , или регенеративная обратная связь приводит к такому изменению входного сигнала, которое способствует отклонению выходного сигнала от первоначального значения и в системе возникают колебания (переменный ток).

Частота этих колебаний в значительной степени определяется подбором компонентов цепи обратной связи.•    Отрицательная обратная связь способствует стабильности работы усилителя, так что изменения выходного сигнала меньше для данного входного сигнала, чем при отсутствии обратной связи.

Это приводит к снижению коэффициента усиления, однако даёт и определённые преимущества: уменьшение искажений и увеличение полосы пропускания (рабочего диапазона частот).•    Отрицательная обратная связь может быть введена в схему с общим эмиттером посредством соединения коллектора с базой, либо путём включения резистора между эмиттером и землёй.

•    Резистор «обратной связи» эмиттер-земля обычно используется в схемах с общим эмиттером в качестве превентивной меры против искажения, обусловленного повышением температуры .•    Отрицательная обратная связь также обладает тем преимуществом, что коэффициент усиления по напряжению становится более зависимым от номиналов резисторов и менее зависимым от характеристик самих транзисторов.

•    Усилители с общим коллектором характеризуются более глубокой отрицательной обратной связью вследствие наличия нагрузочного резистора между эмиттером и землёй. Такая обратная связь обеспечивает исключительно стабильный коэффициент усиления, а также защиту от искажений, обусловленный повышением температуры транзисторов..

•    Коэффициент усиления усилителя с общим эмиттером может быть восстановлен без ущерба для устойчивости к искажениям посредством подключения шунтирующего конденсатора параллельно с «резистором обратной связи» эмиттера.

•    Если усиление напряжения является сколь угодно высоким (10000 и выше), а отрицательная обратная связь используется для уменьшения коэффициента усиления до разумного уровня, то коэффициент усиления будет примерно равен Rобр.св. / Rвх.. При наличии обратной связи изменения коэффициента усиления транзистора ? или других параметров компонента не будут иметь большого влияния на усиление напряжения, в результате чего мы получим стабильный усилитель несложной конструкции.

Источник: http://xn-----7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/776-otritsatelnaya-i-polozhitelnaya-obratnaya-svyaz-v-usilitele-oos-i-pos

4. Обратная связь и её влияние на параметры усилителя. Основы схемотехники. Курс лекций

Отрицательная обратная связь формула

4.1. Основные понятия и виды обратной связи в усилителях

4.2. Влияние обратной связи на коэффициент усиления по напряжению

4.3. Влияние отрицательной обратной связи на нестабильность усиления

4.4. Влияние ООС на нелинейные искажения и помехи

4.5. Влияние ООС на выходное и входное сопротивления усилителя

4.6. Влияние ООС на амплитудно-частотную характеристику усилителя

4.7. Устойчивость усилителей с обратной связью

4.1. Основные понятия и виды обратной связи в усилителях

Обратной связью называют связь между электрическими цепями, при которой часть энергии выходного сигнала передаётся на вход, т.е. из цепи с более высоком уровнем сигнала в цепи с более низким его уровнем.

Обратная связь значительно влияет на свойства и характеристики усилителя, поэтому её часто вводят в усилитель (схему устройства) для изменения его свойств в нужном направление. Такая обратная связь называется внешней. Обратная связь может возникнуть и самопроизвольно, например, из-за физических особенностей усилительного элемента.

Такая обратная связь называется внутренней обратной связью. Обратная связь возникающая из-за паразитных связей (емкостных, индуктивных и др.) называется паразитной.

https://www.youtube.com/watch?v=VP7Iz5rhA8A

Цепь обратной связи вместе с частью схемы усилителя, к которой она подключена, образует замкнутый контур, называемый петлёй обратной связи, рис. 4.1.

Рис. 4.1. Обратная связь в усилителе К – коэффициент усиления усилителя Β – коэффициент передачи цепи обратной связи.

При проектировании и конструировании радиоэлектронных схем принимают меры для ослабления или ликвидации внутренних и паразитных обратных связей. Если в усилителе имеется одна петля обратной связи, то связь называют однопетлёвой, если петель обратной связи несколько, связь называют многопетлёвой, рис. 4.2а и 4.2б.

Рис. 4.2. Виды обратной связи

а) Однопетлевая

б) Двухпетлёвая с независимыми петлями.

Отметим, если в петле обратной связи, охватывающей весь усилитель, имеются петли обратной связи, охватывающие отдельные каскады или части усилителя, их называют местными петлями обратной связи.

Существуют различные способы снятия энергии с выхода схемы и подачи её на вход схемы рис. 4.3 и 4.4. Если энергию сигнала снимают с выхода схемы параллельно нагрузке, рис. 4.3а, связь называется обратной связью по напряжению (или параллельной по выходу), т.к. при этом напряжение обратной связи прямо пропорционально выходному напряжению усилителя UВЫХ.

Рис. 4.3. Способы снятия сигнала обратной связи:

а) обратной связи по напряжению (параллельная обратная связь);

б) обратной связи по току (последовательная обратная связь);

в) смешанная (комбинированная) обратная связь

Если же сигнал обратной связи снимают с выхода последовательно с нагрузкой, рис.4.3б, связь называют обратной связью по току (или последовательной по выходу). В этом случае напряжение обратной связи прямо пропорционально току IВЫХ.

В групповых усилителях многоканальных телекоммуникационных систем используется комбинация отмеченных выше способов, рис. 4.3а и 4.3б. Эта схема носит название комбинированной обратной связи по выходу, рис. 4.3в. Напряжение обратной связи в схеме 4.3в пропорционально двум составляющим: выходному напряжению UСВ.

Н и выходному току UСВ.Т. Из рис. 4.3в легко видеть, что она представляет из себя мостовую схему.

По способу введения сигнала обратной связи во входную цепь усилителя различают:

  • последовательную обратную связь, рис. 4.4а
  • параллельную обратную связь, рис. 4.4б
  • комбинированную обратную связь, рис. 4.4в

Рис. 4.4. Способы введения сигнала обратной связи

а) последовательная по входу обратная связь

б) параллельная по входу обратная связь

в) мостовая (комбинированная) по входу обратная связь

Из рис. 4.4в видно, что эта мостовая схема. Более подробные сведения можно найти в учебнике [1].

4.2. Влияние обратной связи на коэффициент усиления по напряжению

Для оценки влияния обратной связи на коэффициент усиления по напряжению, рассмотрим последовательный способ введения сигнала во входную цепь, рис. 4.5:

Рис. 4.5. Влияние обратной связи на коэффициент усиления

Предположим, что входное сопротивление усиливается ZВХ = ∞ (бесконечно велико). Как видно из рис. 4.5:

UВХ.ИСТ – UВХ.ОС + UСВ = 0; (4.1)

Здесь UВХ.ОС – результирующий сигнал на входе усилителя. Из уравнения (4.1) следует:

UВХ.ОС = UВХ.ИСТ + UСВ;

Выходное напряжение усилителя равно:

UВЫХ.ОС = К· UВХ.ОС; (4.2)

Как видно из уравнения (4.2) К не изменяется; но по отношению к сигналу источника UВХ.ИСТ, коэффициент усиления становится другим:

UВЫХ.ОС = КОС· UВХ.ИСТ; (4.3)

Левые части уравнений (4.2) и (4.3) равны, значит равны и правые. Тогда можно записать:

; (4.4)

т.е. коэффициент усиления при введении обратной связи изменяется пропорционально изменению входного сигнала. Величину F называют возвратной разностью. Учитывая, что:

UВХ.ИСТ = UВХ.ОС – UСВ;

И с учетом (4.4), получим после подстановки:

; (4.5)

Комплексную величину Т называют возвратным отношением:

Таким образом, петлевой коэффициент усиления Т равен произведению коэффициентов передачи петли обратной связи.

Модуль величины | Т | показывает изменение сигнала при прохождении через цепь обратной связи. Если | F | > 1, то обратную связи называют отрицательной (ООС); если же | F | < 1, то положительной (ПОС).

При ООС коэффициент усиления усилителя с обратной связью уменьшается:

; (4.6)

а при ПОС – возрастает:

; (4.7)

В групповых усилителях МЭС применяют комбинированную глубокую ООС (F>>1); тогда из уравнения (4.6) следует:

; (4.8)

т.е. свойства усилителя с ООС определяются в основном цепью четырёхполюсника обратной связи. Это обстоятельство находит широкое применение на практике.

4.3. Влияние отрицательной обратной связи на нестабильность усиления

При работе усилителя его коэффициент усиления может изменяться вследствие изменения параметров усилительных элементов и деталей схемы. Кроме того, значительное влияние на коэффициенты усиления оказывают: старение усилительных элементов, деталей схемы, изменение температуры, влажности и др. Эти причины называются дестабилизирующими факторами.

Количественно изменение коэффициента усиления под влиянием дестабилизирующих факторов оценивают величину без обратной связи:

; (4.9)

где dK –дифференциал коэффициента усиления усилителя. Нестабильность усиления усилителя с обратной связью dqСВ определяется:

; (4.10)

Подставляя в (4.10) выражение для КОС и продифференцировав – получаем для ООС:

;

Следовательно, ООС стабилизирует коэффициент усиления усилителя, уменьшая его нестабильность. При глубокой ООС (F>>1)

4.4. Влияние ООС на нелинейные искажения и помехи

В усилительных устройствах всегда возникают нелинейные искажения; кроме того, имеются помехи. Введение ООС уменьшает нелинейные искажения и помехи в глубину ООС раз [1]:

Следовательно, ООС уменьшает, а ПОС увеличивает помехи и искажения, возникающие в части усилителя, охваченный обратной связью.

В современных групповых усилителях требуется высокое затухание нелинейности (до 80 ÷ 90 дБ и выше). Достижение столь высоких значений невозможно без применения глубокой ООС.

4.5. Влияние ООС на выходное и входное сопротивления усилителя

Обратная связь изменяет выходное и входное сопротивления цепи, к которой оно подключен. Рассмотрим общий случай, т.е. комбинированного подключения четырёхполюсника обратной связи вначале к выходной цепи усилителя, а затем – входной цепи.

Выходное сопротивление усилителя без обратной связи равно:

;

где UВЫХ.ХХ – напряжение холостого хода, а IВЫХ.КЗ – ток короткого замыкания. Выходное сопротивление усилителя с обратной связью равно:

; (4.11)

здесь FВЫХ.КЗ глубина ООС на выходе усилителя в режиме короткого замыкания; FВЫХ.ХХ – глубина ООС на выходе усилителя в режиме холостого хода.

Формула (4.11) называется формулой Блекмана для выходной цепи. Из неё следуют частные случаи: 1) В схеме отсутствует ООС по напряжению; тогда FВЫХ.ХХ = 1, а ZВЫХ.ОС равно:

ZВЫХ.ОС = ZВЫХ. · FВЫХ.КЗ ;

Т.е при последовательном подключение четырёхполюсника обратной связи к выходу усилителя, его выходное сопротивление возрастает.

2) В схеме отсутствует ООС по току; тогда FВЫХ.КЗ = 1, а ZВЫХ.ОС равно: ZВЫХ.ОС = ;

Т.е при параллельном подключение четырёхполюсника обратной связи к выходу усилителя, его выходное сопротивление уменьшается.

Подбирая FВЫХ.ХХ и FВЫХ.КЗ можно всегда согласовать ZВЫХ. с нагрузкой. Это обстоятельство широко используется на практике.

Аналогично определяется входное сопротивление усилителя:

; (4.12)

Формула (4.12) называется формулой Блекмана для входной цепи. Аналогично, последовательное подключении цепи обратной связи ко входу усилителя увеличивает сопротивление:

ZВХ.ОС = ZВХ. · FВХ.КЗ ;

А при параллельном – уменьшает: ;

Регулировка глубины обратной связи в схемах групповых усилителей осуществляется элементами групповой схемы. Обычно для этих целей используется несимметричная дифференциальная схема [1].

4.6. Влияние ООС на амплитудно-частотную характеристику усилителя

Обратная связь, изменяя коэффициент усиления усилителя, изменяет его частотную, фазовую и переходную характеристики. Применительно к ООС, которая обычно используется в усилителе, различают частотно-независимую и частотно-зависимую обратные связи.

В случае частотно-независимой ООС можно получить коэффициент частотных искажений в виде [1]:

;

где М – коэффициент частотных искажений усилителя без обратной связи. При этом полоса частот усилителя расширяется, а коэффициент усиления усилителя, как было отмечено выше, уменьшается в глубину ООС раз.

В другом случае, частотно-зависимой ООС, можно получить желаемую АЧХ (ФЧХ и переходную характеристику), если применить глубокую ООС и зависимость β(f).

Это свойство широко используется в групповых усилителях, в конструировании усилителей и устройств с заданными параметрами.

Например, в линейных усилителях систем передачи с частотным разделением каналов (ЧРК), требуется АЧХ подъёмом в области ВЧ, рис. 4.6:

Рис. 4.6. Влияние частотно-зависимой ООС на коэффициент усиления усилителя

Такую характеристику можно реализовать, если напряжение обратной связи будет уменьшаться с ростом частоты.

4.7. Устойчивость усилителей с обратной связью

Усилители с ООС при определённых условиях могут самовозбуждаться, т.е. генерировать электрические колебания. Это свидетельствует о том, что усилитель прекращает свои функции по усилению электрических колебаний.

При этом ООС превращается в ПОС. это происходит обычно за пределами рабочего диапазона частот из-за фазовых сдвигов в усилителе и в цепи обратной связи.

Фаза как аргумент вектора петлевого коэффициента передачи Т изменяется:

Т = – β·К·е j∆φβК;

где величина ∆φβК определяется как сумма фазовых сдвигов в усилителе и в четырёхполюснике обратной связи:

∆φβК = ∆φК + ∆φβ ; (4.13)

Уравнение (4.13) определяет дополнительный фазовый сдвиг к 180º между векторными источниками сигнала UВХ.ИСТ и UВХ.СВ., т.е. (180º + ∆φβК). Причиной изменения фазы являются реактивные элементы схемы, а на высоких частотах дополнительно инерционность работы усилительных элементов.

При ООС и ПОС величина Т является действительной:

FООС = 1 + ТООС > 1;

FПОС = 1 – ТПОС < 1;

Пока ТПОС < 1, усилитель не возбуждается, хотя ООС превращается в ПОС, т.е. она оказывается ещё недостаточно глубокой для самовозбуждения. Генерация наступает при:

ТПОС = 1;

и коэффициент усиления с обратной связью будет иметь бесконечно большое значение:

;

Практически усилитель возбуждается на низких и высоких частотах при:

ТПОС ≥ 1 и φβК= 180º + ∆φβК

Для оценки устойчивости усилителя с обратной связью используются различные критерии. Наиболее приемлемым оказался критерий Найквиста, который заключается в следующем: “Если точка с координатами (–1;0) лежит внутри годографа вектора β К для диапазона частот от 0 до ∞, то система неустойчива, рис. 4.7а; если же точка (–1;0) лежит вне указанного годографа, система устойчива, рис. 4.7б”

Рис. 4.7. Диаграммы Найквиста для неустойчивого а) и устойчивого усилителей б) с обратной связью.

Для повышения устойчивости усилителей разработаны методы, суть которых сводится к следующему.

  1. В усилителе с обратной связью следует охватить как можно меньше число каскадов, т.к. это уменьшает сдвиг фаз петли обратной связи
  2. Применять в охваченных обратной связью каскадах схемы межкаскадовой связи, дающие малые фазовые сдвиги.
  3. При проектировании усилителей задаются допустимой степенью приближения годографа Т к критической точке; эта степень получала название запаса устойчивости усилителя. Различают запас устойчивости по модулю “X”

X = – 20lg |TX| при arg TX = π; и запас устойчивости по фазе “Y”;

πY = π – arg T при |TX| = 1

Для групповых усилителей, имеющих глубокую ООС принимают запасы устойчивости: по модулю 3n дБ, а по фазе 0,175 рад (10n град.), где n – число усилительных каскадов.

Источник: https://siblec.ru/radiotekhnika-i-elektronika/osnovy-skhemotekhniki/4-obratnaya-svyaz-i-ejo-vliyanie-na-parametry-usilitelya

О вашем здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: